

Some Recent Results in Electromagnetic Meson and Baryon Physics from CLAS

Reinhard Schumacher Carnegie Mellon University

MIN2016, Kyoto Japan, Aug. 1, 2016

- The $f_1(1285)$ meson in photoproduction
 - Unusual reaction mechanism

Seen in coherent two-pion
photoproduction off the deuteron

1.2

MM(γ,p) GeV

1.4

1.6

18

50000

ш ₃₀₀₀₀ б

Number 0

0.6

0.8

Events 30000

• (Skip $\Lambda(1405)$ topic mentioned in online abstract)

CLAS Experiment

- Operations from 1998 to mid-2012
 Photoproduction:
 - Targets: unpolarized LH₂, LD₂, polarized p, & HD-ice
 - Beams: unpolarized, circular, linear, to ~5 GeV
 - Reconstructed: <u>charged</u> tracks: K^{\pm} , p, π^{\pm}
 - 20×10^9 triggers $\rightarrow 1.41 \times 10^6$ KY π events in g11a
- Electroproduction:
 - Q² from ~0.5 to ~3 (GeV/c)²

Structure functions from Rosenbluth and
 beam-helicity separations

Photoproduction of the $f_1(1285)$ Meson

Publication: Photoproduction of the $f_1(1285)$ Meson, R. Dickson *et al.* (CLAS Collaboration), Phys. Rev. C **93**, 065202 (2016).

■ $f_1(1285)$ I^G(J^{PC}) = 0⁺(1⁺⁺)

- Well-established axial-vector meson seen in hadronic reactions;
 - Seen in experimental PWA analyses
 - Seen in Lattice QCD
- Possible "dynamically generated" $K\overline{K}^*$ c.c. state

• $\eta(1295)$ I^G(J^{PC}) = 0⁺(0⁻⁺)

- A "controversial" state seen in $\pi^- p \rightarrow \eta \pi^+ \pi^- n$
 - Seen only in PWA, e.g. J. Manak et al., E852/BNL
- Important in the enumeration of mesonic states

- $f_1(1285)$ is produced "flatter" than the η'
- (Note logarithmic scale)
- Clue about production:
 <u>not</u> meson-exchange
 dominated like the η'

NA Comparison with Models

- Solid red: Effective Lagrangian with meson exchange
 - Kochelev *et al*.
- Dashed: Effective Lagrangian with meson exchange
 - Uncontrolled hadronic form factor cut-offs
 - J-J. Xie (unpublished, private comm.)
- Dotted: "Holographic QCD" model
 - S. Domokos: meson exchange with specific recipe to compute couplings

S. Domokos *et al.*, Phys. Rev. **D 80**, 115018 (2009) N. Kochelev *et al.*, Phys. Rev. **C 80**, 025201 (2009)

- Background-subtracted acceptance-corrected Dalitz plot reveals dominance of decay via $a_0^{\pm} \pi^{\mp}$ intermediate states.
- Strong interference of bands seen. Amplitude analysis!

Helicity system fit succeeds!

- s-channel helicity system
- Components:
 - **Blue:** L=1, m=0
 - **Green**: L=1, m=±1
 - Red: Total
- a_0^{\pm} interference reproduced
 - *p*-wave decay and positive parity demonstrated
 - Decaying meson is definitely the $f_1(1285)$

NG Gottfried-Jackson system fit

- t-channel helicity system
- Components:
 - Blue: L=1, m=0
 - Green: L=1, m=±1
 - Red: Total

160 🗖

140

120

100

80

60

40

20

0

- Cyan: L=0 fit
- a_0 interference NOT reproduced
- Decaying meson is not aligned in this system

$\mathbb{N}_{f_1}^{\mathcal{K}}$ Conclusions re $f_1(1285)$:

- The photoproduced meson CLAS sees at 1281 MeV is the $f_1(1285)$, not the $\eta(1295)$.
- It comes from the decay of N* or other non-tchannel processes.
- Can it be done in the nuclear medium?
- MIN theme of medium modifications: <u>how is</u> <u>this axial-vector meson altered in the medium</u>?
 - Discuss...

Photoproduction of Structure in the $d\pi$ System Near the $N\Delta$ Mass: Sign of a Quasi- Bound State?

Two-baryon resonances

6 guarks in a bag

The deuteron $I(J^{P})=0(1^{+})$

- 2.2 MeV bound
- The only clear-cut "dibaryonic molecule"

Recall the nn, pp, and np)=1(0+) strong spin singlet states are unbound...

- ... by only ~100 keV
- One of the great "fine-tuning" mysteries of nature!!

³S₁

 ^{1}S

N Two-baryon resonances

I (J^P)

- Bound N Δ , bound $\Delta\Delta$,
 - $\Lambda\Lambda$ (Jaffe's "H-particle")
 - Binding?
 - Width: 'narrow' or 'wide'?
 - Spin, Isospin ?

N
$$\Delta$$
 I (**J**^P)=1 (2⁺) (?)
" \mathcal{D}_{12} "

 CLAS study: new observations

$$\Delta \Delta I (J^{P})=0 (3^{+}) = Recent WASA@COSY discovery$$

$d^{(1)}$ d*(2380) Resonance in I (J^P) = 0 (3⁺)

- The WASA@COSY result for $\Delta\Delta$ state
- M ~ 2370 MeV
 - $= 2m_{\Delta} 90 \text{ MeV}$
- $\Gamma \sim 70 \text{ MeV} < 1/3 \Gamma_{\Delta\Delta}$
- $\Delta\Delta$ state " \mathcal{D}_{03} "
- interpretation has been controversial

P. Adlarson et al, Phys Rev Lett 106, 242302 (2011) ...and numerous others since.

•What about $N\Delta$? If a $\Delta\Delta$ (" \mathcal{D}_{03} ") state exists, so should $N\Delta$ Expect $N\Delta$ to have $I J^{P} = 1 2^{+} (`\mathcal{D}_{12}'')$

$\frac{\mathbf{N}}{\mathbf{f}_{1}} \text{ S-matrix poles for } \mathbf{N} \Delta \left(\mathcal{D}_{12} \right)$

Pole Position \mathcal{D}_{12} (MeV)	Model Approach	Ref.
2147 – i60	Faddeev model πNN, πΔN	A. Gal, H. Garcilazo, Nucl. Phys. A928 73 (2014)
2148 – i63	$pp(^{1}D_{2}) \Leftrightarrow \pi d(^{3}P_{2})$ coupled channels	R.A. Arndt, J.S. Hyslop, L.D. Roper, Phys. Rev. D 35 (1987) 128.
2144 – i55	$pp(^{1}D_{2}) \Leftrightarrow \pi d(^{3}P_{2})$ coupled channels	N. Hoshizaki, Phys. Rev. C 45 (1992), R1424, Prog. Theor. Phys. 89 (1993) 563.

 $\pi d \rightarrow \pi d$ Elastic PWA

_{R.} R. Arndt, I. Strakovsky, R. Workman, Phys Rev C 50, 1796(1994) ₂

 Resembles πd elastic scattering but with an off-shell pion.
 Suppose it to be dominant at small -t

- Photons on a deuteron target
 - g10, g13, g14 data sets
- Spin-1 photon & spin-1 deuteron:
 - $\vec{1} + \vec{1} \rightarrow \vec{J} = \vec{0}, \vec{1}, \vec{2}$ in S wave, is favorable
- Isospin I = $\{0,1\} + 0 \rightarrow 0, 1$ allowed
- \blacksquare We looked for both NA and AA structures

•
$$\gamma d \rightarrow p p \pi^-$$
 - messy mix of partial waves

• $\gamma d \rightarrow d \pi^+ \pi^-$ - coherent exclusive production: clean!

Preliminary CLAS data showing No sign of a " $\Delta\Delta$ " signal Evidence for p background Evidence for a " $N\Delta$ " signal

$\int d \pi^+ \pi^-$ Invariant Mass

- Gash at W = 2.46 GeV/ c^2 : known gap in CLAS photon energy coverage
- No obvious $\Delta\Delta$ visible in CALS/g13 (maybe PWA, or not formed in γ d)
- Recall WASA@COSY claims $\Delta\Delta$ at W = 2.37 GeV/c² in $pn \rightarrow d \pi^+ \pi^-$

R. A. Schumacher, Carneg P. Adlarson *et al.*, Phys. Rev. C 88, 055208

$\left| \sqrt{\frac{k}{f_1}} \right| \gamma d \rightarrow d \rho, \ \rho \rightarrow \pi^+ \pi^-$ background

NAT Fit to Resonance-like Shapes

- Use 50 MeV slices in
- Assume a Breit-Wigner line shape
- Let $d\pi$ system decay to N Δ (L=0), $d\pi$ (L=1), and NN (L=2)
- ρ not cut away; model as
 P.S. background
- Incoherent amplitudes
- Following fits are preliminary! Prelude to PWA analysis

- \blacksquare Peaks are all below the NA centroid
- Peaks widths are not identical: $\cos \theta_{\pi}$ dependent; very preliminary result:

•
$$m_{peak} = 2115 \pm 10 \text{ MeV/c}^2$$

- FWHM = 125 ± 25 MeV
- We have remaining acceptance issues near high and low edges
- Best fits are found using non-relativistic BW line shapes with $L_{\pi d} = 1$

Summary re N $\Delta \rightarrow d \pi$ Structure

- Big π[±]d signal seen in CLAS photoproduction data, peaking below the NΔ mass.
 - Dominant at forward pion angles.

- Extracting mass and width depends on line-snape model, ρ treatment, amplitude interferences...
- We are NOT claiming that this $d\pi$ -system bump is necessarily the expected resonant \mathcal{D}_{12} state... but it could be
 - Final/initial state interactions, other dynamics...
 - Scattering matrix poles vs. peaks in spectra...
- Spin determination in progress via $\vec{\gamma}\vec{d} \rightarrow d\pi^+\pi^-$

- First study of $f_1(1285)$ in photoproduction
 - Unusual photo-production mechanism
 - Study in nuclear medium shifts?
- Signs of an NA quasi-bound structure decaying to $d\pi$
 - Coherent two-pion photoproduction off deuteron
 - \mathcal{D}_{12} candidate (preliminary)