Photoproduction of the $f_1(1285)$ Meson

Reinhard Schumacher
Carnegie Mellon University

Ph.D. work of Ryan Dickson, completed 2011

arXiv:1604.07425 [nucl-ex], Accepted by Phys. Rev. C

MESON2016, Krakow PL, June 3, 2016
Outline

- What are the $f_1(1285)$ and $\eta(1295)$ mesons?
- Identification of the state in CLAS/g11
- Results for:
 - Mass and Width
 - Differential cross sections - model comparisons
 - Branching ratios $\eta \pi \pi$, $\gamma \rho^0$, $K K \pi^-$
 - Dalitz plot analysis
 - spin and parity determination
Two Players:

- $f_1(1285) \quad I^G(J^{PC}) = 0^+(1^{++})$
 - Well-established axial-vector meson seen in hadronic reactions;
 - Seen in experimental PWA analyses
 - Seen in Lattice QCD
 - Possible “dynamically generated” $\bar{K}K^*$ – c.c. state

- $\eta(1295) \quad I^G(J^{PC}) = 0^+(0^{-+})$
 - A “controversial” state seen in $\pi^- p \rightarrow \eta \pi^+ \pi^- n$
 - Seen only in PWA, e.g. J. Manak et al., E852/BNL
 - Important in the enumeration of mesonic states
First Observation of $f_1(1285)$ or $\eta(1295)$ in
$\gamma p \rightarrow p x \rightarrow p \pi^+ \pi^-(\eta)$

Which state is it? $f_1(1285)$, $\eta(1295)$, or both?

Statistics in CLAS g11 data: $\sim 1.5 \times 10^5 \ x(1280)$ events
Two $x \rightarrow K K \pi$ decay modes

- Detect $p K^+ \pi^- (K^0)$ (left)
- Detect $p K^- \pi^+ (\bar{K}^0)$ (right)
- Combine channels prior to yield extraction using Voigtian + polynomial

$W = 2.45$ GeV

$-0.2 < \cos \theta^{\text{c.m.}} < 0.0$
Cross-check η' cross section

- Compare two CLAS analyses of η' photoproduction
 - Same data set, using different methods
 - Red: Williams & Krahn et al.*
 - Blue: Dickson et al. (this work)
 - Good agreement between independent analyses
- Use (small) differences to quantify systematic uncertainty

(Note log scale)

Results

arXiv:1604.07425 [nucl-ex], Accepted by Phys. Rev. C
R. Dickson et al., CLAS Collaboration
Mass & Width Measurement

- Mass (GeV) vs. $\cos\theta^{c.m.}$
 - $W = 2.35$ GeV
 - $W = 2.45$ GeV
 - $W = 2.55$ GeV
 - $W = 2.65$ GeV

- Width (MeV) vs. $\cos\theta^{c.m.}$
 - $W = 2.35$ GeV
 - $W = 2.45$ GeV
 - $W = 2.55$ GeV
 - $W = 2.65$ GeV
Mass & Width Measurement

<table>
<thead>
<tr>
<th>Channel</th>
<th>Mass (MeV/c²)</th>
<th>Width (MeV/c²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\eta' \rightarrow \eta\pi^+\pi^-)</td>
<td>958.48 ± 0.04</td>
<td>(\Gamma \ll \sigma_{\text{exp}})</td>
</tr>
<tr>
<td>(x \rightarrow \eta\pi^+\pi^-)</td>
<td>1281.0 ± 0.8</td>
<td>18.4 ± 1.4</td>
</tr>
<tr>
<td>(\eta')</td>
<td>957.78 ± 0.06</td>
<td>0.198 ± 0.009</td>
</tr>
<tr>
<td>(f_1(1285))</td>
<td>1281.9 ± 0.5</td>
<td>24.2 ± 1.1</td>
</tr>
<tr>
<td>(\eta(1295))</td>
<td>1294 ± 4</td>
<td>55 ± 5</td>
</tr>
</tbody>
</table>

- Mass consistent with PDG value for \(f_1(1285) \) not \(\eta(1295) \)
- Width is smaller than PDG by several \(\sigma \)
Cross Section vs. Angle and W

$$\gamma p \rightarrow pf_1(1285) \rightarrow p\pi^+\pi^-(\eta)$$

- **Differential cross-sections**
 - $\eta\pi^+\pi^-$ final state
 - total rate not measured

- **Systematic uncertainty**
- Very weak forward peaking seen
 - Cross section falls at very forward angles
Compare Mesons: f_1 and $\eta'(958)$

- $f_1(1285)$ is produced "flatter" than the η'
- (Note logarithmic scale)
- Clue about production: not meson-exchange dominated like the η'
Comparison with Models

- **Solid red**: Effective Lagrangian with meson exchange
 - Kochelev et al.

- **Dashed**: Effective Lagrangian with meson exchange
 - Uncontrolled hadronic form factor cut-offs
 - J-J. Xie (unpublished, private comm.)

- **Dotted**: "Holographic QCD" model
 - S. Domokos: meson exchange with specific recipe to compute couplings

Event-by-event, rescale meson sidebands to lie within the Dalitz plot contour

Algebraic method developed to do this projection...
Dalitz analysis of $x \rightarrow \eta \pi^+ \pi^-$

Background-subtracted acceptance-corrected Dalitz plot reveals dominance of decay via $a_0^\pm \pi^\mp$ intermediate states.

Strong interference of bands seen. Amplitude analysis!
From decay: find spin & parity

\[x \rightarrow a_0^\pm + \pi^\mp \]

\[J^P \rightarrow 0^+ + 0^- + L^{-1L} \]

\(f_1 \): p-wave decay

\(\eta \): s-wave decay

Adair system
From decay: find spin & parity

\[x \rightarrow a_0^\pm + \pi^\mp \]
\[J^P \rightarrow 0^+ + 0^- + L^{-1L} \]

\(f_1 \): \(p \)-wave decay
\(\eta \): \(s \)-wave decay

- tests “\(s \)-channel helicity conservation”
From decay: find spin & parity

\[x \rightarrow a_0^{\pm} + \pi^\mp \]

\[J^P \rightarrow 0^+ + 0^- + L^{-1L} \]

Gottfried-Jackson system - tests “t-channel helicity conservation”

June 2016

R. A. Schumacher, Carnegie Mellon University
Helicity system fit

- s-channel helicity system
- Components:
 - Blue: $L=1, m=0$
 - Green: $L=1, m=\pm 1$
 - Red: Total
- a_0^\pm interference reproduced
- p-wave decay and negative parity demonstrated
- Decaying meson is definitely the $f_1(1285)$
Gottfried-Jackson system fit

- t-channel helicity system
- Components:
 - Blue: $L=1, m=0$
 - Green: $L=1, m=\pm 1$
 - Red: Total
 - Cyan: $L=0$ fit
- a_0 interference NOT reproduced
- Decaying meson is not aligned in this system

$M^2(\eta \pi^-)$ vs. $M^2(\eta \pi^+)$, Folded

Data

Simulation

June 2016

R. A. Schumacher, Carnegie Mellon University
Properties of $f_1(1285)$ vs. $\eta(1295)$

<table>
<thead>
<tr>
<th></th>
<th>$f_1(1285)$</th>
<th>$\eta(1295)$</th>
<th>CLAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I^G(J^{PC})$</td>
<td>$0^+(1^{++})$</td>
<td>$0^+(0^{-+})$</td>
<td>$J^P = 1^+$</td>
</tr>
<tr>
<td>Mass (MeV)</td>
<td>1281.9 ± 0.5</td>
<td>1294 ± 4</td>
<td>1281.0 ± 0.8</td>
</tr>
<tr>
<td>Width, Γ (MeV)</td>
<td>24.2 ± 1.1</td>
<td>55 ± 5</td>
<td>18.4 ± 1.4</td>
</tr>
<tr>
<td>Decays:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4π</td>
<td>$33 \pm 2%$</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$\eta \pi \pi$</td>
<td>$52 \pm 2%$</td>
<td>Seen</td>
<td>-</td>
</tr>
<tr>
<td>$\Gamma(a_0\pi ,(\text{no}KK))$</td>
<td>$69 \pm 13%$</td>
<td>-</td>
<td>$74 \pm 9%$</td>
</tr>
<tr>
<td>$\Gamma(K\bar{K}\pi)$</td>
<td>$17.1 \pm 1.3%$</td>
<td>-</td>
<td>$21.6 \pm 3.1%$</td>
</tr>
<tr>
<td>$\Gamma(\gamma\rho^0)$</td>
<td>$10.5 \pm 2.2%$</td>
<td>Not seen</td>
<td>$4.7 \pm 1.8%$</td>
</tr>
</tbody>
</table>
Conclusions: The photoproduced meson CLAS sees at 1281 MeV is the $f_1(1285)$.

- Production mechanism is more consistent with s-channel process (N^*-decay...) than t-channel process (meson-exchange)
 - Cross section is much "flatter" than η' production
 - The $f_1(1285)$ is aligned in the s-channel helicity system, seen via $\eta\pi^+\pi^-$ Dalitz-plot amplitude analysis

- $\Gamma \sim 18.2$ MeV; narrower than PDG average

- Branching ratios measured:
 - $K K \pi / \eta \pi \pi$, $a_0 \pi / \eta \pi \pi$ and $\gamma \rho^0 / \eta \pi \pi$
Backup Slides
CLAS Experiment

- **Photoproduction:**
 - **Targets:** unpolarized LH$_2$, polarized p, & HD-ice
 - **Beams:** unpolarized, circular, linear, to \sim5 GeV
 - **Reconstructed** $K^+p\pi^-(\pi^0)$ or $K^+\pi^+\pi^-(n)$
 - 20×10^9 triggers $\rightarrow 1.41 \times 10^6$ KYπ events in g11a

- **Electroproduction:**
 - Q^2 from \sim0.5 to \sim3 (GeV/c)2
 - Structure functions from Rosenbluth and beam-helicity separations
Quark Model for Mesons

Table 15.2: Suggested $q\bar{q}$ quark-model assignments for some of the observed light mesons. Mesons in bold face are included in the Meson Summary Table. The wave functions f and f' are given in the text. The singlet-octet mixing angles from the quadratic and linear mass formulae are also given for the well established nonets. The classification of the 0^{++} mesons is tentative: The light scalars $a_0(980)$, $f_0(980)$, and $f_0(500)$ are often considered as meson-meson resonances or four-quark states, and are omitted from the table. Not shown either is the $f_0(1500)$ which is hard to accommodate in the nonet. The isoscalar 0^{++} mesons are expected to mix. See the “Note on Scalar Mesons” in the Meson Listings for details and alternative schemes.

<table>
<thead>
<tr>
<th>$n^{2s+1}L_J$</th>
<th>J^{PC}</th>
<th>$l = 1$</th>
<th>$l = \frac{1}{2}$</th>
<th>$l = 0$</th>
<th>$l = 0$</th>
<th>θ_{quad}</th>
<th>θ_{lin}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1^1S_0</td>
<td>0^{-+}</td>
<td>π</td>
<td>K</td>
<td>η</td>
<td>$\eta'(958)$</td>
<td>-11.4</td>
<td>-24.5</td>
</tr>
<tr>
<td>1^3S_1</td>
<td>1^{--}</td>
<td>$\rho(770)$</td>
<td>$K^*(892)$</td>
<td>$\phi(1020)$</td>
<td>$\omega(782)$</td>
<td>39.1</td>
<td>36.4</td>
</tr>
<tr>
<td>1^1P_1</td>
<td>1^{++}</td>
<td>$b_1(1235)$</td>
<td>K_{1B}^*</td>
<td>$h_1(1380)$</td>
<td>$h_1(1170)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1^3P_0</td>
<td>0^{++}</td>
<td>$a_0(1450)$</td>
<td>$K_0^*(1430)$</td>
<td>$f_0(1710)$</td>
<td>$f_0(1370)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1^3P_1</td>
<td>1^{++}</td>
<td>$a_1(1260)$</td>
<td>K_{1A}^*</td>
<td>$f_1(1420)$</td>
<td>$f_1(1285)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1^3P_2</td>
<td>2^{++}</td>
<td>$a_2(1320)$</td>
<td>$K_2^*(1430)$</td>
<td>$f_2(1525)$</td>
<td>$f_2(1270)$</td>
<td>32.1</td>
<td>30.5</td>
</tr>
<tr>
<td>1^1D_2</td>
<td>2^{-+}</td>
<td>$\pi_2(1670)$</td>
<td>$K_2(1770)^*$</td>
<td>$\eta_2(1870)$</td>
<td>$\eta_2(1645)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1^3D_1</td>
<td>1^{--}</td>
<td>$\rho(1700)$</td>
<td>$K^*(1680)$</td>
<td>$\omega(1650)$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1^3D_2</td>
<td>2^{--}</td>
<td>$K_2(1820)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1^3D_3</td>
<td>3^{--}</td>
<td>$\rho_3(1690)$</td>
<td>$K_3^*(1780)$</td>
<td>$\phi_3(1850)$</td>
<td>$\omega_3(1670)$</td>
<td>31.8</td>
<td>30.8</td>
</tr>
<tr>
<td>1^3F_4</td>
<td>4^{++}</td>
<td>$a_4(2040)$</td>
<td>$K_4^*(2045)$</td>
<td>$f_4(2050)$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1^3G_6</td>
<td>5^{--}</td>
<td>$\rho_6(2350)$</td>
<td>$K_6^*(2380)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1^3H_6</td>
<td>6^{++}</td>
<td>$a_6(2450)$</td>
<td></td>
<td></td>
<td></td>
<td>$f_6(2510)$</td>
<td></td>
</tr>
<tr>
<td>2^1S_0</td>
<td>0^{-+}</td>
<td>$\pi(1300)$</td>
<td>$K(1460)$</td>
<td>$\eta(1475)$</td>
<td>$\eta(1295)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2^3S_1</td>
<td>1^{--}</td>
<td>$\rho(1450)$</td>
<td>$K^*(1410)$</td>
<td>$\phi(1680)$</td>
<td>$\omega(1420)$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The $1^{±±}$ and $2^{±}$ isospin $\frac{n}{2}$ states mix. In particular, the K_{1A}^* and K_{1B}^* are nearly equal (45°) mixtures of the $K_1(1270)$ and $K_1(1400)$. The physical vector mesons listed under 1^3D_1 and 2^3S_1 may be mixtures of 1^3D_1 and 2^3S_1, or even have hybrid components.
The $J^{PC} = 1^{++}$ mesons, including the $f_1(1285)$, are ‘seen’ in recent lattice calculations...

Dynamically Generated Mesons

- The $f_1(1285)$ as a $\{\bar{K}K^* + \text{c.c.}\}$ composite state
 - Chiral Lagrangian + unitarization of the pseudoscalar – vector meson nonet interaction
 - Lattice calculations
 - Expect “non-standard” production mechanisms, if true

Branching Ratios

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Stat. Uncert.</th>
<th>Syst. Uncert.</th>
<th>PDG $f_1(1285)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\eta\pi^+\pi^-$ Event Yield</td>
<td>1.33×10^5</td>
<td>4.9×10^3</td>
<td>2.9×10^3</td>
<td></td>
</tr>
<tr>
<td>$\eta\pi^+\pi^-$ Acceptance</td>
<td>0.0652</td>
<td>9.7×10^{-5}</td>
<td>0.0072</td>
<td></td>
</tr>
<tr>
<td>$K^\pm K^0\pi^+$ Event Yield</td>
<td>6570</td>
<td>180</td>
<td>340</td>
<td></td>
</tr>
<tr>
<td>$K^\pm K^0\pi^+$ Acceptance</td>
<td>0.0149</td>
<td>3.18×10^{-5}</td>
<td>0.0016</td>
<td></td>
</tr>
<tr>
<td>$\gamma\rho^0$ Event Yield</td>
<td>3790</td>
<td>790</td>
<td>850</td>
<td></td>
</tr>
<tr>
<td>$\gamma\rho^0$ Acceptance</td>
<td>0.0248</td>
<td>6.4×10^{-5}</td>
<td>0.0050</td>
<td></td>
</tr>
<tr>
<td>Isospin C.G. $\Gamma(K^\pm K^0\pi^+)/\Gamma(K\bar{K}\pi)$</td>
<td>$2/3$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isospin C.G. $\Gamma(\eta\pi^+\pi^-)/\Gamma(\eta\pi\pi)$</td>
<td>$2/3$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\gamma\rho^0$ correction from η' $d\sigma/d\Omega$</td>
<td>0.95</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Branching Fraction $\Gamma(K\bar{K}\pi)/\Gamma(\eta\pi\pi)$ | 0.216 | 0.010 | 0.031 | 0.171 ± 0.013 |
| Branching Fraction $\Gamma(\gamma\rho^0)/\Gamma(\eta\pi\pi)$ | 0.047 | 0.010 | 0.015 | 0.105 ± 0.022 |

TABLE III. Relative branching fractions of the $f_1(1285)$ meson, with estimated uncertainties from all sources.

- $K\bar{K}\pi / \eta\pi\pi$ ratio agrees with PDG average
 - (isospin factors applied)
- $\gamma\rho^0 / \eta\pi\pi$ ratio smaller than PDG average by 55%
Dalitz analysis of $x \rightarrow \eta \pi^+ \pi^-$

- Subtract huge multi-pion background to reveal...
- ... dominance of decay via $a_0^{\pm} \pi^{\mp}$ intermediate state.
- Strong interference of bands seen. Amplitude analysis!

June 2016
R. A. Schumacher, Carnegie Mellon University
Dalitz analysis of $\chi \rightarrow \eta \pi^+ \pi^-$

\[A_{m=\pm 1} (m_{a_0^+ \pi^-}, m_{a_0^+ \pi^+}) = BW(m_{a_0^+ \pi^-}) W_{1,\pm 1}(\Theta_{a_0^+ \pi^-}, \phi_{a_0^+ \pi^-}) + BW(m_{a_0^- \pi^+}) W_{1,\pm 1}(\Theta_{a_0^- \pi^+}, \phi_{a_0^- \pi^+}) \]

\[A_{m=0} (m_{a_0^+ \pi^-}, m_{a_0^- \pi^+}) = BW(m_{a_0^+ \pi^-}) \left(W_{1,0}(\Theta_{a_0^+ \pi^-}, \phi_{a_0^+ \pi^-}) + W_{0,0} \right) + BW(m_{a_0^- \pi^+}) \left(W_{1,0}(\Theta_{a_0^- \pi^+}, \phi_{a_0^- \pi^+}) + W_{0,0} \right) \]

\[BW(m | m_0, \Gamma_0) = \frac{\sqrt{m_0 \Gamma_0}}{m_0^2 - m^2 - im_0 \Gamma_0} \frac{q(m)}{q(m_0)} \quad - \text{a Breit–Wigner for each } a_0 \]

\[f_1 : \quad W_{L=1, m=0, \pm 1}(\Theta_H, \phi) = a Y_{1,+1}(\Theta_H, \phi) + b Y_{1,0}(\Theta_H, \phi) + a Y_{1,-1}(\Theta_H, \phi) \]

\[\eta : \quad W_{L=0, m=0}(\Theta_H, \phi) = c Y_{0,0} \quad - \text{angular distribution in the selected system} \]

\[T(m_{a_0^+ \pi^-}, m_{a_0^- \pi^+}) = \frac{q(m_{a_0^+ \pi^-})}{q(m_0)} \frac{q(m_{a_0^- \pi^+})}{q(m_0)} \left(\left| A_{m=\pm 1} (m_{a_0^+ \pi^-}, m_{a_0^+ \pi^+}) \right|^2 + \left| A_{m=0} (m_{a_0^+ \pi^-}, m_{a_0^- \pi^+}) \right|^2 \right) \]

- total decay-weighted magnitude squared
One Reaction Topology
(example)

\[\gamma \rightarrow p \pi^+ \pi^- \]

\(m_x \)

\(\alpha_0^- \)

\(\pi^+ \)

\(\pi^- \)

\(\eta \)

\(\text{red} = \text{measured particles} \)
Two yield extraction methods

- **Voigtian lines shape using known CLAS resolution**
 - Convolution of BW and Gaussian

- **Monte Carlo fitting using signal and estimated multi-pion backgrounds**
 - $p\rho\pi\pi$ (green)
 - $p\phi_1(1370)$ (purple)
 - $p\pi(1280)$ (red) - signal
 - Total (blue)
Looking for $\gamma\rho^0$ decays

- Kinematic fit to $\gamma p \rightarrow p\pi^+\pi^-(\gamma)$
- Select $p_{\text{perp}} > 40$ MeV/c
- 2nd kin. fit to $\gamma p \rightarrow p\pi^+\pi^-(\pi^0)$ to reject π^0 background
- Very small signal: only extract branching ratio to $\eta\pi^+\pi^-$
 - Sum over all kinematics

June 2016

R. A. Schumacher, Carnegie Mellon University
Comparison with Models

- N. Kochelev model
 - Effective Lagrangian
 - t-channel ρ and ω exchange
 - Solid: $f_1(1285)$
 - Dashed: $\eta(1295)$
 - Dotted: sum

Poor match to data
Dalitz analysis of $x \rightarrow \eta \pi^+ \pi^-$

- Fold data on symmetry axis
- Generate “phase space” Monte Carlo events with finite width of meson and CLAS resolution included
- “Weight” the events with amplitude-based intensity

\[x(1280) \rightarrow \eta\pi\pi \text{ Dalitz Analysis} \]

\[M(\eta\pi^\pm)^2 \text{ vs. } M(\pi^\pm)^2 \]

\[M(\eta\pi^\pm)^2 \text{ vs. } M(\pi^\pm)^2 \text{ Folded} \]

R. A. Schumacher, Carnegie Mellon University
Dalitz analysis of $\chi \to \eta \pi^+ \pi^-$

- Fit to full plot did not converge, so trim data to focus on 'bands'.
- Structure in unweighted Monte Carlo due to finite width and resolution effects
The $f_1(1285)$ is “aligned” in the helicity system.

The mix of $m = 0$ and $m = \pm 1$ is a property of the production mechanism in the range $2.30 < W < 2.80$ GeV.

$$P_\pm : P_0 = 31.8 : 69.2, \pm 1.4\%.$$

- Discuss later...

- We also measure the ratio

$$\frac{\Gamma(a_0\pi(noKK))}{\Gamma(\eta\pi\pi(total))} = 74 \pm 2(stat) \pm 9(syst)\%$$

- Consistent with PDG value
Speculation re $f_1(1285)$ production

- Alignment in helicity system suggests s-channel N^* production decays to $f_1(1285)p$
 - Can we infer J^P of the N^* baryon resonance?
 - $3/2^+ \rightarrow 1^+ + 1/2^+$ in s-wave leads to $P_\pm : P_0 = 1 : 2$ as seen in the data
 - $1/2^+ \rightarrow 1^+ + 1/2^+$ in s-wave leads to $P_\pm : P_0 = 2 : 1$, opposite to what data show

- But there are no known N^* states with low J at $W \sim 2.5$ GeV, so the question remains open
Compare meson types

At equal W

\[
\frac{d\sigma}{d\Omega} \text{ (nb/sr)} \rightarrow \eta \pi^+ \pi^-
\]

- $W = 2.35$ GeV
- $W = 2.45$ GeV
- $W = 2.55$ GeV
- $W = 2.65$ GeV
- $W = 2.75$ GeV
Compare meson types

At equal excess energy above threshold