

<u>Strangeness Physics at</u> <u>CLAS in the 6 GeV Era</u>

Reinhard Schumacher Carnegie Mellon University

June 7, 2016

- The N* spectrum of states via hyperon photoand electro- production
- Dimensional scaling of KA photoproduction
- Excited Y* cross sections measured at CLAS
 Σ⁰(1385) (J^P = 3/2⁺); Λ(1405) (J^P = 1/2⁻); Λ(1520) (J^P = 3/2⁻)
- Structure of the $\Lambda(1405)$: $\Sigma \pi$ line shapes; J^P
- Strangeness suppression in exclusive electroproduction
- Cascade photoproduction
- Brief outlook to future work

CLAS Experiment

Photoproduction:

Targets: unpolarized LH₂, polarized p, & HD-ice Beams: unpolarized, circular, linear, to ~5 GeV • Reconstructed $K^+p\pi^-(\pi^0)$ or $K^+\pi^+\pi^-(n)$ • 20×10^9 triggers $\rightarrow 1.41 \times 10^6$ KY π events in g11a Electroproduction: Q² from ~0.5 to ~3 (GeV/c)² - Structure functions separations from ϕ dependencies, Rosenbluth and beam-helicity

The N* Spectrum Photoproduction

Strangeness in N* Physics: Status

Table 8. Star rating suggested for baryon resonances and their decays. Ratings of the Particle Data Group are given as *; additional stars suggested from this analysis are represented by \star ; (*) stands for stars which should be removed.

										_
		all	πN	γN	$N\eta$	ΛK	ΣK	$\Delta \pi$	$N\sigma$	-
	$N(1440)\frac{1}{2}^+$	****	****	****	(*)			***	***	-
	$N(1710)\frac{1}{2}^+$	***	***	***	***	***	**	*(*)		
	$N(1880)\frac{1}{2}^+$	**	*	*		**	*			
	$N(1535)\frac{1}{2}^{-}$	****	****	****	****			*		-
$S_{1} \Longrightarrow$	$N(1650)\frac{1}{2}^{-}$	****	****	***	***	***	**	**(*)		
	$N(1895)\frac{1}{2}^{-}$	**	*	**	**	**	*			
	$N(1720)\frac{3}{2}^+$	****	****	****	****	**	**	***		-
\mathbf{P}	$N(1900)\frac{3}{2}^+$	***	**	***	**	***	**	**		
' 13 ' 1	$N(1520)\frac{3}{2}^{-}$	****	****	****	***			****		-
	$N(1700)\frac{3}{2}^{-}$	***	**	**	*	*(*)	*	***		
	$N(1875)\frac{3}{2}^{-}$	***	*	***		***	**		***	
$\boldsymbol{\nu}_{13} \boldsymbol{\neg}$	$N(2150)\frac{3}{2}^{-}$	**	**	**		**		**		
10	$N(1680)\frac{5}{2}^+$	****	****	****	*			**(*)	**	-
	$N(1860)\frac{5}{2}^+$	*	*	*						
	$N(2000)\frac{5}{2}^+$	***	*(*)	**	**	**	*			
	$N(1675)\frac{5}{2}^{-}$	****	****	***(*)	*	*		***(*)	*	-
	$N(2060)\frac{5}{2}^{-}$	***	**	***	*		**			
	$N(1990)\frac{7}{2}^+$	**	*(*)	**						-
	$N(2190)\frac{7}{2}^{-}$	****	****	***		**				-
\mathbf{U}_{1}	$N(2220)\frac{9}{2}^+$	****	****							-
	$N(2250)\frac{9}{2}^{-}$	****	****							-
	$\Delta(1910)\frac{1}{2}^+$	****	****	**		\frown	**	**		-
	$\Delta(1620)^{\frac{1}{2}}$	****	****	***				****		-
	$\Delta(1900)^{\frac{2}{1}}$	**	**	**			**	**		
	$\Delta(1232)\frac{3}{2}^{+}$	****	****	****						-
	$\Delta(1600)\frac{2}{3}^{+}$	***	***	***				***		
	$\Delta(1920)\frac{2}{3}^{+}$	***	***	**			***	**		
	$\Delta(1700)\frac{3}{2}^{-}$	***	***	***				**		-
	$\Delta(1940)^{\frac{2}{3}}$	*	*	**				* fro	$m \Delta \eta$	
	$\Delta(1905)^{\frac{2}{5}+}$	****	****	****			***	**(**)		
CPC-16 Symposium	$\Delta(1950)^{\frac{7}{2}+}$	****	****	***		t	***	***		A

- Role of JLab/CLAS strangeness physics in unraveling properties of N* and Δ states?
- Worldwide effort to determine resonance poles, branching fractions, helicity couplings, etc.
- <u>Bottom line</u>: "Stars" & new resonances added to world database

. V. Anisovich (BoGa) et al., Eur.Phys. J. A **48**, 15 (2012)

Theory: Bonn Gatchina Model

(One of a few models on the market)

- Coupled channels (K-matrix) framework
 - Input: from π N, K N elastic; γ N, π N inelastic to $\pi^{\pm 0}$ N, ηN, η'N, K^{±0} Y, ππN
 - Use ALL experimental channels, including the strangeness channels & spin observables
 - Partial Wave Analysis
 - First extract each J^P wave
 - \blacksquare Fit N* and Δ resonance pole parameters

Short list of References:

A. Sarantsev, V. Nikonov, A. Anisovich, E. Klempt, U. Thoma; Eur. Phys. J. A **25**, 441 (2005) A.V. Anisovich *et al.*, Eur. Phys J. A **25** 427 (2005); Eur. Phys J. A **24**, 111 (2005);

V. A. Nikonov *et al.*, Phys Lett. B **662**, 246 (2008).

A. Anisovich, E. Klempt, V. Nikonov, A. Sarantsev, U. Thoma; Eur. Phys. J. A 47, 153 (2011).

CRC-16 Symposium

$\gamma p \rightarrow K^+ \Lambda$: cross section

R. Bradford et al., Phys.Rev. C 73, 035202 (2006)

Forward peaking indicates t-channel processes at high W

Angular dependence at lower W consistent with s- and u-channel processes.

$\gamma p \rightarrow K^+ \vec{\Lambda}$: recoil polarization P

s (GeV)

(GeV

 Kaon-MAID model (green)

- F.X. Lee *et al.*, Nucl. Phys. *A695*, 237 (2001).
- Single-channel BW resonance fits
- No longer up-to-date
- Bonn-Gatchina model (blue)
 - Multi-channel, unitary, BW resonance fit
 - Large suite of N* contributions
 - Was not predictive for recoil polarization → amplitudes became more precisely defined !

A.V. Sarantsev et al., Eur. Phys. J., A **25**, 441 (2005).

R. A. Schur M. McCracken et al, (CLAS) Phys. Rev. C 81, 025201 (2010)₁₀

$V_{K^{\dagger}} | \vec{\gamma} p \rightarrow K^{\dagger} \vec{\Lambda} Beam-Recoil O_x and O_z$

Bonn-Gatchina 2014 model was <u>not</u> predictive in newly-measured kinematics & observables:

The model is <u>descriptive</u> but not <u>predictive</u>: lots of high quality data needed to pin down the resonance content of the reaction.

 \rightarrow amplitudes now become more precisely defined !

$\gamma_{\mathbf{K}^{\dagger}}^{\uparrow} | \vec{\gamma} \mathbf{p} \rightarrow \mathbf{K}^{\dagger} \vec{\Lambda} \text{ Beam-Recoil } C_x \text{ and } C_z$

Nikanov *et al.*'s refit of Bonn-Gatchina coupled-channel isobar model mix includes: S_{11} -wave, $P_{13}(1720)$, $P_{13}(1900)$, $P_{11}(1840)$ $K^+\Sigma^0$ cross sections also better described with $P_{13}(1900)$

R. Bradford *et al.*, (CLAS Collaboration) Phys. Rev. C **75**, 035205 (2007). V. A. Nikanov *et al.*, Phys Lett. B **662**, 246 (2008). see also: A.V. Anisovich *et al.*, Eur. Phys J. A **25** 427 (2005). _{Ilon University}

$\gamma_{\mathcal{K}^{\dagger}}$ CLAS Output vs. the World

Experiment	Ref(s)	Final State	W range (GeV)	Σ	Р	C_x	C_z	Т	O_x	O_z
CT AG 11	[10]	72.4	1.62.0.04							
CLAS gI1	[12]	KΛ	1.62 - 2.84		*					
	[13]	$K\Sigma^0$	1.69 - 2.84		*					
CLAS gla	[0, 11]	KΛ	1 68 - 2 74							
OLAS git	[9, 11]		1.00-2.74		×	*	*			
	[9, 11]	$K \Sigma^{o}$	1.79 - 2.74		*	*	*			
LEDG	54 J	77.1								
LEPS	[14]	$K\Lambda$	1.94 - 2.30	*						
	[14]	$K\Sigma^0$	1.94 - 2.30	*						
CDAAL	[15 10]	VA	1 64 1 00							
GRAAL	[15, 16]	ΛΛ	1.64-1.92	*	*			*	*	*
	[15]	$K\Sigma^0$	1.74 - 1.92	*	*					
CT AS as		KΛ	1 71 9 10							
OLAS go			1.71-2.19	*	*			*	*	*
		$K\Sigma^0$	1.75 - 2.19	*	*			*	*	*

TABLE II. Measurements performed by the different experiments.

Spin Observables with linear and circular polarized photons Hyperon recoil polarization components are easy to measure: competitive advantage over non-strange baryon channels

C.A. Paterson et al. (CLAS Collaboration) submitted for publication , 2016

- Omit results for Σ photoproduction
- Omit discussion of photoproduction reactions on the neutron (deuteron), which accesses the isospin dependence of photon coupling.

Strangeness and the N* Spectrum of States - Electroproduction

Structure Functions

For unpolarized target & polarized e⁻ beam:

$\gamma \sum_{i=1}^{k} K^{+} \Lambda$ Structure Functions

Y CLAS ep Data Set Overview

#	Period	E _b (GeV)	Events (M)
1	e1c	2.567	900
2	e1c	4.056	370
3	e1c	4.247	620
4	e1c	4.462	420
5	e1d	4.817	300
6	e1-6	5.754	4500
7	e1f	5.499	5000
8	e1g	3.178	2500

- $\mathsf{K}^{\scriptscriptstyle \mathsf{t}}\Lambda$ recoil polarization
 - W=1.6-2.7 GeV, <Q^{2>}=1.9 GeV²
 [Gabrielyan et al., PR C 90, 035202 (2014)]

Publications:

- $\mathsf{K}^{\scriptscriptstyle \mathsf{T}}\Lambda$ beam-recoil pol. transfer
 - *W=1.6-2.15 GeV, Q²=0.3 1.5 GeV²* [Carman *et al.*, PRL **90**, 131804 (2003)]
- K^+ $\Lambda ~\sigma_{\rm L} / \sigma_{\rm T}$ ratio from pol. transfer data
 - W=1.72-1.98 GeV, Q²~0.7 GeV²
 [Raue & Carman, PR C 71, 065209 (2005)]
- $K^+\Lambda$, $K^+\Sigma^0$ separated structure functions
 - W=thr-2.4 GeV, Q²=0.5-2.8 GeV²
 - $\sigma_{U}, \sigma_{LT}, \sigma_{TT}, \sigma_{L}, \sigma_{T} K^{+}\Lambda, K^{+}\Sigma^{0}$ [Ambrozewicz *et al.*, PR *C* **75**, 045203 (2007)]
 - W=thr-2.6 GeV, Q²=1.4-3.9 GeV²
 - σ_U, σ_{LT}, σ_{TT}, σ_{LT} K⁺Λ , K⁺Σ⁰
 [Carman *et al.*, PRC 87, 025204 (2013)]
- K^{+} \Lambda fifth structure function $\sigma_{\text{LT}'}$
 - *W=1.6-2.1 GeV, Q²=0.65, 1.0 GeV²* [Nasseripour *et al.,* PR C **77**, 065208 (2008)]
- K⁺ Λ , K⁺ Σ^0 beam-recoil pol. transfer
 - W=thr-2.6 GeV, Q²=1.6-2.6 GeV²
 - [Carman et al., PR C 79, 065205 (2009)]

Dimensional Scaling of KA

Publication: Scaling and Resonances in Elementary K⁺Λ Photoproduction, R.A.Sch. and M.M. Sargsian Phys.Rev.C83 025207 (2011).

CRC-16 Symposium

Constituent-Counting Scaling

R. A. Schumacher, Carnegie Mellon Ur

- Constituent counting rules for exclusive scattering
- Valid for s→∞ and t/s fixed
 - $t/s \sim \cos(\theta_{\rm cm})$ as $s \rightarrow \infty$
- n = number of pointlike constituents
- Follows from pQCD...
 but also other models
- Does it work for KA ?

22

Excited Y* Cross Sections

Publication: Differential Photoproduction Cross Sections of $\Sigma^0(1385)$, $\Lambda(1405)$ and $\Lambda(1520)$, K. Moriya *et al.* (CLAS Collaboration), Phys. Rev. C **88**, 045201 (2013).

Differential $\Sigma^{0}(1385)$ Cross Section

$\gamma + p \rightarrow K^+ + \Sigma^0 (1385)$

Experiment: see tchannel-like forward peaking & u-channel backward rise

- Agreement with LEPS
- Theory by Oh et al.¹: contact term dominant: included four highmass N^* and Δ resonances
 - Prediction was fitted to preliminary CLAS total 1019055, seation, (yearsyaga) Phys. Rev. C 77, 045204 (2008)

CRC-16 Symposium

R. A. Schu K. Moriya et al. (CLAS), Phys. Rev. C 88, 045201 (2013). 25

Differential $\Lambda(1520)$ Cross Section

Differential $\Lambda(1405)$ Cross Section

 $\gamma + p \rightarrow \mathrm{K}^{+} + \Lambda (1405)$

- Experiment: first-ever measurements
- Low W: See strong isospin dependence
 - Charge channels differWHY?!?
- High W: See *t*-channellike forward peaking & *u*-channel backward rise at high W
- Channels merge together at high W

R. A. Schu K. Moriya et al. (CLAS), Phys. Rev. C 88, 045201 (2013).27

• $\gamma + p \rightarrow K^+ + Y^{(*)}$

- All three Y*s have similar total cross sections
- Ground state Λ and Σ^0 are comparable to Y^* in size¹

1. R. Bradford et al. (CLAS) Phys. Rev. C 73, 035202 (2006)

_R K. Moriya *et al.* (CLAS), Phys. Rev. C **88**, 045201 (2013).

$\Lambda(1405)$ Structure

Publications: Measurement of the $\Sigma\pi$ Photo-production Line Shapes Near the $\Lambda(1405)$, K. Moriya *et al.* (CLAS Collaboration), Phys. Rev. C **87**, 035206 (2013); Isospin Decomposition of the Photoproduced $\Sigma\pi$ System near the $\Lambda(1405)$, R. A. Sch. & K. Moriya, Nucl. Phys A **914**, 51 (2013).

What "is" the $\Lambda(1405)$?

An issue since its prediction/discovery

- Dynamically generated resonance, via unitary meson-baryon channel coupling
 - R. Dalitz & S.F.Tuan, Phys. Rev. Lett. 2, 425 (1959), Ann. Phys. 10, 307 (1960).
 - Chiral unitary models (present-day theoretical industry!)
- SU(3) singlet 3q state, $I = 0, J^P = \frac{1}{2}$
- \overline{KN} sub-threshold state
 - Recent first Lattice QCD result: J. Hall *et al.*, Phys Rev Lett **114**, 132002 (2015)
- Signal may be a mix of
 I = 0 and I = 1 states

Chiral Unitary Models

- SU(3) baryons irreps 1+8_s+8_a combine with 0⁻ Goldstone bosons to generate:
 - Two octets and a singlet of $\frac{1}{2}$ baryons generated dynamically in SU(3) limit
- SU(3) breaking leads to two S = -1 I = 0poles near 1405 MeV
 - ~1420 mostly KN ~1390 mostly $\pi\Sigma$
- Possible weak I = 1 pole also predicted

D. Jido, J.A. Oller, E. Oset, A. Ramos, U-G Meissner Nucl. Phys. A **725**, 181 (2003) J.A. Oller, U.-G. Meissner Phys. Lett B **500**, 263 (2001). 31

What "is" the I = 1 piece?

- I = 1 resonance? I = 1 continuum amplitude?
- L. Roca and E. Oset model¹:
 - Possible I=1 resonance in vicinity of NK threshold
- B.-S. Zou et al. model²:
- $\Sigma(\frac{1}{2})^{-}$ is a $|[ud][us]\overline{s}\rangle$ state: part of a new nonet • No interference seen in $\Lambda(1520)$ mass range:
- No interference seen in Λ(1520) mass range: therefore it's not a continuum amplitude
- More investigation needed ! Can BGO-OD do this?
- 1. L. Roca, E. Oset "On the isospin 0 and 1 resonances from $\pi\Sigma$ photoproduction data" Phys. Rev. C **88** 055206 (2013).
- 2. Bing-Song Zou "Five-quark components in baryons", Nucl Phys A 835 199 (2010).

Spin and Parity of $\Lambda(1405)$

Publication: Spin and Parity of the $\Lambda(1405)$ Baryon, K. Moriya *et al.* (CLAS Collaboration), Phys. Rev. Lett. **112**, 082004 (2014).

 $\frac{J^{P} = \frac{1}{2}^{-} \text{ confirms quark}}{\text{model expectation}}$

 $\Rightarrow P = "negative"$

and the $\Lambda(1405)$ is produced ~ +45% polarized

Strangeness -2: Where are the Excited Cascades?

CRC-16 Symposium

Figure 3.39: Missing mass off K^+K^+ in the reaction $\gamma p \to K^+K^+\pi^0 X^-$ with cuts as described in Tables 3.2 and 3.3. The $\Xi^-(1320)$ and $\Xi^-(1530)$ signals peak at 1320.9 ± 0.4 and 1535.3 ± 0.6 MeV.

Strangeness Suppression in qq Creation in Exclusive Reactions

Publication: M. D. Mestayer, K. Park *et al.* (CLAS Collaboration), Phys. Rev. Lett. **113**, 152004 (2014).

K⁺ K⁺ Λ : π^+ n : π^0 p Electroproduction Ratios

- Motivation:
 - Quark model picture of quark-pair creation and flux-tube breaking: does it apply in the low-energy exclusive limit?

Measurements:

- Ratio of processes in which only one qq pair is produced: an ss, dd, or uu, respectively
- In quark-model picture, meson ratios are proportional to the relative production rates of ss, dd, or uu
- Physics conclusion:
 - Ratio of ss pair creation relative to $u\overline{u}$ or dd is suppressed $\sim 0.2 - 0.3$
 - Consistent with high-energy results when 100's of particles are produced

The Future

JLab Hall B / CLAS12

Baseline equipment

Forward Detector (FD)

- TORUS magnet (6 coils)
- HT Cherenkov Counter
- Drift chamber system
- LT Cherenkov Counter
- Forward ToF System
- Pre-shower calorimeter
- E.M. calorimeter

Central Detector (CD)

- SOLENOID magnet
- Barrel Silicon Tracker
- Central Time-of-Flight

Beamline

- Polarized target (transv.)
- Moller polarimeter
- Photon Tagger

Upgrades to the baseline

Under construction

- MicroMegas
- Central Neutron Detector
- Forward Tagger
- RICH detector (1 sector)
- Polarized target (long.)

- Real photon beam centered at 9 GeV
- Liquid hydrogen target
- Reconstruct <u>both</u> charged and neutral particles over large angular range
- Hermetic detector within solenoid magnetic field
- Meson & Baryon
 spectroscopy: search for
 new and exotic states

Topics not addressed today:

K* photoproduction

• Publication: Cross Sections for the $\gamma p \rightarrow K^{*+}\Lambda$ and $\gamma p \rightarrow K^{*+}\Sigma^0$ Reactions, W. Tang, K. Hicks *et al.* (CLAS) Phys. Rev. C 87, 065204 (2013).

Hypernuclear electroproduction

 Halls A & C, Nakamura, Hashimoto, Markowitz, Tang, et al.

Reactions on neutron (deuteron) targets (g13, g14...)

Summary/Conclusions

- Hyperon photo- and electro-production used to pin down N* spectrum above 1.6 GeV
- Y* cross sections compared; $\Lambda(1405)$ "weird"
- Interference effects in $\Lambda(1405)$ line shapes in $\Sigma\,\pi$ demonstrated
- Direct J^{P} measurement for $\Lambda(1405)$ made: $\frac{1}{2}^{-1}$
- Cross section "scaling" demonstrated
- Strangeness "suppression" seen in exclusive
- The future is at CLAS12 and GlueX

Most Y, Y* publications from Hall B

and power supplies

5 new cryomodules

Upgrading as CLAS12 for 12 GeV

Outline /Overview

- Excited Y* cross sections measured at CLAS
 - $\Sigma^{0}(1385)$ (J^P = 3/2⁺) in $\Lambda \pi^{0}$ channel
 - $\Lambda(1405)$ (J^P = $1/2^{-}$) in 3 $\Sigma\pi$ channels
 - $\Lambda(1520)$ (J^P = $3/2^{-}$) in 3 $\Sigma\pi$ channels
- Isospin interference in $\Lambda(1405)$: line shapes
- Spin & parity \mathbf{J}^{P} of the $\Lambda(1405)$
- First Electro-production of $\Lambda(1405)$
- K*Y production

$K^+\Lambda$: beam asymmetry Σ

$$\left. \frac{d\sigma}{d\Omega_{K^{+}}} = \frac{d\sigma}{d\Omega_{K^{+}}} \right|_{unpol.} \left\{ 1 + \Sigma P_{\gamma} \cos 2\phi \right\}$$

GRAAL threshold range, E_v < 1.5 GeV

LEPS 1.5 < E_y < 2.4 GeV

The trends are consistent: Σ is smooth and featureless at all energies and angles.

LEPS

FIG. 3. Beam polarization asymmetries for the $p(\vec{\gamma}, K^+)\Lambda$ (left) and $p(\vec{y}, K^+)\Sigma^0$ (right) reactions as a function of $\cos(\theta_{u,u}^{c.m.})$ for different photon-energy bins. The error bars are

0.9

s using R. G. T. Zegers *et al.* (LEPS) Phys. Rev. Lett. **91**, 092001 (2003) anssen mental A. Lleres et al. (GRAAL) Eur. Phys. J. A **31**, 79 (2007). egie Mellon University

Bonn-Gatchina 2014 model was not predictive in newly-measured kinematics & observables

C.A. Paterson et al. (CLAS Collaboration) to be published, 2016 ar, Carnegie Mellon University

linearly polarized photons

transversely polarized target

R. A. Schumacher, Carnegie Mellon University

longitudinally polarized target

$\kappa^{\dagger} \gamma p \rightarrow K^{\dagger} \Lambda$: helicity asymmetry E

54

Seeking New S=0 Baryons via Mesons off the <u>Proton</u>:

published, acquired, FroST(g9b)

	σ	Σ	Т	Ρ	E	F	G	н	T _×	Tz	L _x	Lz	<i>O</i> _×	O _z	C _×	C _z	CLAS run Period
pπ ⁰	~	1	1	1	1	1	1	1									g1, g8, g9
$n\pi^+$	~	1	1	1	1	1	1	1									g1, g8, g9
рη	~	1	1	1	1	1	1	1									g1, g11, g8, g9
pŋ'	~	1	1	1	1	1	1	1									g1, g11, g8, g9
рω	~	1	1	1	1	1	1	1									g11, g8, g9
K ⁺ Λ	~	1	1	~	1	1	1	1	1	1	1	1	1	1	~	~	g1, g8, g11
$K^+\Sigma^0$	~	1	1	~	1	1	1	1	1	1	1	1	1	1	~	~	g1, g8, g11
$K^{0*}\Sigma^+$	~										1	1			1	1	g1, g8, g11

Y

Seeking New S=0 Baryons via Mesons off the <u>Neutron</u>:

published, acquired, HD-ice

	σ	Σ	Т	Ρ	E	F	G	н	T _x	Tz	L _×	Lz	<i>O</i> _x	O _z	C _x	C _z	CLAS run Period
рπ⁻	•	1	1		1	1	1	1									g2, g10, g13, g14
pp ⁻	1	1	1		1	1	1	1									g2, g10, g13, g14
K ⁰ Λ	~	1	√	1	 Image: A second s	 Image: A set of the set of the	1	1	1	1	 Image: A set of the set of the	1	✓	✓	√	✓	g13, g14
K ⁰ Σ ⁰	1	~	1	1	1	1	1	1	1	1	1	1	✓	√	✓	✓	g13, g14
Κ+Σ-	1	\$	1		1	1	1	1									g10, g13, g14
K ^{0*} Σ ⁰	1	✓															g10, g13
	The combination of all of these measurements on																

The combination of all of these measurements on proton and neutron targets represents an extremely powerful tool in the search for new baryon states.

 $E = 5.5 \text{ GeV}, W: \text{thr} - 2.6 \text{ GeV}, Q^2 = 1.80, 2.60, 3.45 \text{ GeV}^2$ [Carman *et al.*, PR C **87**, 025204 (2013)]

N* Baryons: Seen & "Missing"

- Relativized CQM
 - Classify oscillator-model states by I, J, P
- Consistent with observation of a "missing" N* state in K⁺ Λ PDG2013 now lists the "**" N(2150) 3/2⁻ D₁₃

S. Capstick and W. Roberts, Phys. Rev. **D58**, (1998). ; Carnegie Mellon University

K* overlap must be subtracted in some W bins

R. A. Schumacher, Carnegie Mellon University

Yields for $\Sigma^0(1385)$

- Use the dominant $\Lambda \pi^0$ decay mode (88%)
- Select Λ in $p\pi^-$ invariant mass;
- Select π^0 via K⁺ Λ missing mass
- Fit to $\Lambda \pi^0$ channel
- Remove other channels (K*Σ) by incoherent fits with Monte Carlo templates

γ_{k}^{*} Yields for $\Lambda(1405) \& \Lambda(1520)$

- Reconstruct and select ground state Σ^{\pm} states
- Remove $\Sigma^0(1385) \rightarrow \Sigma^{\pm} \pi^{\mp}$ (6% each) by scaling down contribution from dominant $\Lambda \pi$ channel
- Separate other channels (K*Σ, K+Y*) by incoherent fits with Monte Carlo templates and Breit-Wigner functions

Agreement between $\Sigma^{+}\pi^{-}$ decay modes: tests acceptance consistency

Agreement among $\Sigma^+\pi^-$, $\Sigma^0\pi^0$, $\Sigma^-\pi^+$ decay modes: tests acceptance consistency

γ + p → K⁺ + Λ(1520)
 Good agreement among Σπ decay modes
 Corrected with 42% branching fraction to Σπ

CRC-16 Symposium

$\gamma_{\mathbf{K}^{\dagger}}$ Parity and Spin of $\Lambda(1405)$

- How does one measure these things?
 - Find a reaction wherein Λ^* is created polarized
 - ${\scriptstyle \bullet}$ Decay angular distribution to $\Sigma\,\pi$ relates to J
 - J = 1/2 : <u>flat</u> distribution is the <u>best possible</u> evidence
 - J = 3/2: "smile or frown" distribution, where p is the $m = \pm 3/2$ fraction $I(\theta_{y}) \propto 1 + \frac{3(1-2p)}{2p+1} \cos^{2} \theta_{y}$
 - Parity given by polarization <u>transfer</u> to daughter
 No model dependence: pure kinematics

CRC-16 Symposium

YCLAS12: Very Strange Baryons

Study of the Ω^- and Ξ^* are among the main goals of the CLAS12 spectroscopy program:

- Ω⁻ discovered in 1964: after 50 years, indication on J^P from Babar and others but full determination not yet achieved
- =* spectrum still poorly known: many states missing and spin/parity undetermined

Photoproduction mechanism implies creation of three s quarks

- Models indicate $\sigma(\Omega^2) \sim 0.3-2$ nb at E $\sim 7GeV$
- Expected production rates in CLAS12:
 - Ω⁻ : 90 /h
 - Ξ-(1690)/Ξ-(1820): 0.2/0.9 k/h
- Ω⁻: measurement of the cross section and investigation of production mechanisms
- Ξ*: spin/parity determination, cross section and production mechanism, measurement of doublets mass splitting

V. E. Barnes et al., Phys. Rev. Let. 12 (1964) 204

$\Lambda(1405)$ Electroproduction

Publication: First Observation of the $\Lambda(1405)$ Line Shape in Electroproduction, H. Lu *et al.* (CLAS Collaboration), Phys. Rev. C 88, 045202 (2013).

