

$\gamma_{K^{+}}^{\gamma^{*}}$

Photoproduction of Strangeness (Excited States)

Reinhard Schumacher Carnegie Mellon University

> & Kei Moriya, PhD for the CLAS Collaboration

October 1, 2013, Rome, Italy

R. A. Schumacher, Carnegie Mellon University

MENU 2013

- g11a data set, 2004 unpolarized LH₂ target unpolarized tagged photon beam: 0.8 to 3.8 GeV - reconstructed $K^+ p \pi^-(\pi^0)$ or $K^+ \pi^+ \pi^-(n)$ • 20×10^9 triggers $\rightarrow 1.41 \times 10^6$ KY π events
- Jefferson Lab, Newport News, VA, USA PhD work of Kei Moriya, currently at

Indiana University

AS experiment

Cross Sections

New Publication: Differential Photoproduction Cross Sections of $\Sigma^0(1385)$, $\Lambda(1405)$ and $\Lambda(1520)$, K. Moriya, R. A. Sch. *et al.* (CLAS Collaboration), accepted by Phys. Rev. C; arXiv:1305.6776 [nucl-ex]

Differential $\Sigma^{0}(1385)$ Cross Section

 $\gamma + p \rightarrow \mathrm{K}^{+} + \Sigma^{0} (1385)$

Experiment: see tchannel-like forward peaking & u-channel backward rise

- Agreement with LEPS
- Theory by Oh et al.¹: contact term dominant; included four high-mass N^* and Δ resonances
 - Prediction was fitted to preliminary CLAS total cross section (years ago)

1. Y. Oh, C. M. Ko, K. Nakayama, Phys. Rev. C 77, 045204 (2008)

R. A. Schumacher, Carnegie Mellon University

$\gamma_{\mathbf{K}^{\dagger}}^{\uparrow}$ Total Σ^{0} (1385) Cross Section

- Extrapolation to all kaon angles
- Average of many similar polynomials

• e.g.
$$f(z) = \left| \sum_{l=0}^{L} c_l P_l(z) \right|^2$$

$$\gamma + p \rightarrow \mathrm{K}^{+} + \Sigma^{0} (1385)$$

- Blue: measured
- Red: extrapolated total
- Agrees with ABBHHM¹ & CEA²
- Oh's³ "bump" at W=2.1 GeV (E_y=1.9 GeV) due to N* 's
- 1. R. Erbe et al. (ABBHHM) Phys Rev. 188, 2060 (1969)
- 2. H. Crouch et al. (CEA) Phys Rev 156, 1426 (1967)
- 3. Y. Oh, C. M. Ko, K. Nakayama, Phys. Rev. C 77, 045204 (2008)

$\gamma_{\mathbf{K}^{\dagger}}^{\mathbf{V}}$ Differential Λ (1520) Cross Section

- $\gamma + p \rightarrow \mathbf{K}^+ + \Lambda (1520)$
 - Blue: measured
 Red: extrapolated total
- CLAS midway between SAPHIR¹ and LAMP2² results

• He & Chen⁴ "bump" at W=2.1 GeV (E_{γ} =1.9 GeV) from N(2080) D_{13} J^P = 3/2⁻

F. Wieland et al. (SAPHIR) Eur.Phys.J. A47, 47 (2011)
 D. Barber et al. (LAMP2) Z. Phys. C7, 17 (1980)

3. S.I. Nam & C.W. Kao, Phys. Rev. **C 81**, 055206 (2010) 4. J. He & X.R. Chen, Phys. Rev. **C 86**, 035204 (2012)

$\gamma_{\mathbf{K}^{+}}^{\uparrow}$ Differential Λ (1405) Cross Section

 $\gamma + p \rightarrow \mathrm{K}^{+} + \Lambda \,(1405)$

- Experiment: each Σ π channel yields a different cross section (! Not expected¹ !)
- Indication of isospin interference in $\Lambda(1405)$ mass region

• threshold $< m_{\Sigma\pi} < 1.50 \text{ GeV}$

Differential $\Lambda(1405)$ Cross Section

- $\gamma + p \rightarrow K^+ + \Lambda (1405)$
- Experiment: first-ever measurements
- High W: See *t*-channellike forward peaking & u-channel backward rise at high W
- Low W: See strong isospin dependence
 - Charge channels differ WHY?!?
- Channels merge together at high W

$\gamma_{\mathbf{K}^{\dagger}}^{\mathbf{V}}$ Differential Λ (1405) Cross Section

- $\gamma + p \rightarrow \mathrm{K}^{+} + \Lambda (1405)$
- Sum three $\Sigma \pi$ decay modes \rightarrow "net" differential cross section
 - Mixed agreement with LEPS data¹

Theories:

- Nam et al.²: s-channel Born term dominant ; K* exchange for 3 values of g K*NA*
- Williams, Ji, Cotanch³: crossing and duality contraints; no N*, estimated g KNA*

M. Niiyama et al. (LEPS) Phys Rev C78, 035202 (2008)
 S.I. Nam et al., J. Kor. Phys. Soc. 59, 2676 (2011)
 R. Williams et al., Phys. Rev. C43, 452 (1991)

14

• $\gamma + p \rightarrow \mathbf{K}^+ + \mathbf{Y}^{(*)}$

- All three Y*s have similar total cross sections
- Ground state Λ and Σ^0 are comparable to Y^* in size¹

1. R. Bradford et al. (CLAS) Phys. Rev. C 73, 035202 (2006)

Line Shapes

Recent Publications: Measurement of the $\Sigma\pi$ Photoproduction Line Shapes Near the $\Lambda(1405)$, K. Moriya, R. A. Sch. *et al.* (CLAS Collaboration), Phys. Rev. C **87**, 035206 (2013); Isospin Decomposition of the Photoproduced $\Sigma\pi$ System near the $\Lambda(1405)$, R. A. Sch. & K. Moriya, Nucl. Phys A **914**, 51 (2013)

Three charge combinations: $|T_{\pi^{-}\Sigma^{+}}|^{2} = \frac{1}{3}|t_{0}|^{2} + \frac{1}{2}|t_{1}|^{2} - \frac{2}{\sqrt{6}}|t_{0}||t_{1}|\cos\phi_{01},$ $|T_{\pi^{0}\Sigma^{0}}|^{2} = \frac{1}{3}|t_{0}|^{2},$ $|T_{\pi^{+}\Sigma^{-}}|^{2} = \frac{1}{3}|t_{0}|^{2} + \frac{1}{2}|t_{1}|^{2} + \frac{2}{\sqrt{6}}|t_{0}||t_{1}|\cos\phi_{01}.$

MENU 2013

Table 2: Results using two I = 0 and one I = 1 Breit-Wigner line shapes and fitting to all final charge states simultaneously. The uncertainties reflect the stability of repeated fits with varying initial values. "N/A" means no free parameter was allowed.

Amplitude	Centroid m_R	Width Γ_0	Phase $\Delta \Phi_I$	Flatté γ	
	(MeV)	(MeV)	(radians)	Factor	
I = 0 (low mass)	1338 ± 10	44 ± 10	N/A	0.94 ± 0.20	_
I = 0 (high mass)	1384 ± 10	76 ± 10	1.8 ± 0.4	N/A	
I = 1	1367 ± 20	54 ± 10	2.2 ± 0.4	1.19 ± 0.20	

Coupling to $\overline{K}N$

- One I=0 centroid moves to $\Sigma\pi$ threshold
- Flatté channel coupling; pulls peak to ~1405MeV
- Single I=1 amplitude treated as resonant

What "is" the I=1 piece?

- I=1 resonance? I=1 continuum amplitude?
- L. Roca and E. Oset paper¹
 - Possible I=1 resonance in vicinity of NK threshold
- B.-S. Zou papers² • $\Sigma\left(\frac{1}{2}\right)^{-}$ is a $|[ud][us]\overline{s}\rangle$ state: part of a new nonet
- No interference seen in A(1520) mass range: therefore it's not a continuum amplitude
- More investigation needed !
- 1. L. Roca, E. Oset "On the isospin 0 and 1 resonances from $\pi\Sigma$ photoproduction data" arXiv:1307.5752 [nucl-th]
- 2. Bing-Song Zou "Five-quark components in baryons", Nucl Phys A 835 199 (2010).

L. Roca, E. Oset "On the isospin 0 and 1 resonances from $\pi\Sigma$ photoproduction data" arXiv:1307.5752 [nucl-th]

• This effect is NOT seen for the $\Lambda(1520)$

• No model calculation has computed cross section and line shapes together.

Spin and Parity of $\Lambda(1405)$

Upcoming Publication: CLAS, to be submitted soon ...

Parity and Spin of $\Lambda(1405)$

- PDG <u>assumes</u> $J^P = \frac{1}{2}^-$ based on quark model
 - No direct experimental evidence for the parity
 - Cf. note by R. H. Dalitz, 1998 RPP
- How does one measure these things?
 - Find a reaction wherein Λ^* is created <u>polarized</u>
 - Decay angular distribution to $\Sigma \pi$ relates to J
 - J = 1/2 : <u>*flat*</u> distribution is the <u>best possible</u> evidence
 - J = 3/2: "smile or frown" distribution, where p is the $m = \pm 3/2$ fraction $I(\theta_u) \propto 1 + \frac{3(1-2p)}{\cos^2 \theta_u} \cos^2 \theta_u$

$$I(\theta_{y}) \propto 1 + \frac{3(1-2p)}{2p+1} \cos^{2} \theta_{y}$$

- Parity given by polarization <u>transfer</u> to daughter
- No model dependence: pure kinematics

MENU 2013

Strangeness Electroproduction

Publication: First Observation of the $\Lambda(1405)$ Line Shape in Electroproduction, H. Lu *et al.* (CLAS Collaboration), submitted to Phys. Rev. C; arXiv:1307.4411 [nucl-ex]

$\gamma_{\mathbf{K}^{+}}^{\uparrow}$ Electroproduction of $\Lambda(1405)$

- Probe the pole "structure" for Q² > 0 via electromagnetic form factors
- Theory: e.m. form factors computed; ∧(1405) is "larger" than the neutron
- Experiment: hard to isolate pure e.m. γΛ*Λ vertex

R. A. Schumacher, Carnegi T. Sekihara, T. Hyodo, D. Jido, Phys Rev C83, 055202 (2011).

$\gamma_{\mathbf{K}^{\dagger}}^{\uparrow}$ Electroproduction of $\Lambda(1405)$

- 5.5 GeV electron beam
- $e p \rightarrow e' K^+ p \pi^-(\pi^0)$, four particles detected
- CLAS acceptance: 1.0 < Q² < 3.0 GeV²; 1.5 < W < 3.5 GeV.
- Dominant backgrounds: non-resonant K⁺Σ⁺π⁻ resonant K^{*0}Σ⁺
- Σ (1385) found negligible
- Monte Carlo for signal and background channels acceptances

$\gamma_{\mathbf{K}^{+}}^{\uparrow}$ Electroproduction of $\Lambda(1405)$

K* Production

Recent Publication: Cross Sections or the $\gamma p \rightarrow K^{*+}\Lambda$ and $\gamma p \rightarrow K^{*+}\Sigma^0$ Reactions, W. Tang *et al.* (CLAS Collaboration) Phys. Rev. C 87, 065204 (2013).

$\gamma_{\mathbf{K}^{+}}^{\uparrow}$ K^{*+} Λ , K^{*+,0} $\Sigma^{0,+}$ photoproduction

- N* searches
 with coupling
 to K*Y
- Search for ĸmeson interaction
 1.7 to 3.9 GeV

$\gamma_{\mathbf{K}^{+}}^{\uparrow}$ K^{*+} Λ , K^{*+0} Σ^{0+} photoproduction

Comparison with theory

Cyan: Oh and Kim (O-K) Isobar Model Blue: Kim, Nam, Oh, Kim (KNOK) Regge Model Dotted curves include additional s-channel N* with M<2.2 GeV and L<3.

Clearly, the currently available theoretical models cannot reproduce the data. This suggests that highermass and higher-L resonances are needed.

 Models include known high mass
 resonances

$\mathbf{Y}_{\mathbf{K}^{+}}^{\star}$ K^{*+} Λ , K^{*+0} Σ^{0+} photoproduction

FIG. 12. (Color online) Total cross section ratio of the reactions $\gamma p \rightarrow K^{*0}\Sigma^+$ to $\gamma p \rightarrow K^{*+}\Lambda$. The ratio uses the present data in the denominator and data from Ref. [5] in the numerator. The dashed and solid curves are theoretical calculations from Oh and Kim [4] models I and II, respectively.

Suggestion of kmeson exchange

Solid: mostly t-channel κ-meson Dotted: very little κ-meson

There is scarce evidence for the strange scalar called the kappa (κ), which is the octet partner of the a₀(980) and f₀ (980) mesons. The CLAS data support an earlier claim by LEPS that also measured K*⁰ Σ ⁺ photoproduction.

Summary/Conclusions

- First comprehensive $\gamma p \rightarrow K^+Y^*$ cross sections for the first three excited hyperons, all current models show (fixable?) deficiencies
- New interference phenomena in Λ(1405) cross section(s) and line shapes demonstrated
- First direct J^P measurement for $\Lambda(1405)$: $\frac{1}{2}^-$
- First look at A(1405) electroproduction: supports a possible two-bump/pole structure
- First K*+Y cross sections shown