

Photoproduction of Structure in the $d\pi$ System Near the N Δ Mass: Sign of a Quasi-Bound State?

Reinhard Schumacher Carnegie Mellon University

work with: Paul Mattione Jefferson Lab CLAS Collaboration

CEBAF Large Acceptance Spectrometer

APS Meeting, Baltimore, MD, April 13, 2015

NA Outline / Overview

Theoretical expectations about two-baryon resonant states

- Experimental observations
 - $\Delta\Delta$ quasi-bound state: WASA/COSY
 - πd & pp elastic scattering: SAID analysis

Photoproduction at CLAS/JLab
 γ d → d π⁺ π⁻ exclusive channel
 N∆ quasi-bound state or ISI/FSI?

NA Two-baryon resonances

 $I(J^{P})=O(1^{+})$ " $\mathcal{D}_{II} = \mathcal{D}_{01}$ "

 ${}^{1}S_{0} \qquad \qquad I(J^{P}) = 1(0^{+})$ " \mathcal{D}_{10} "

- 6 quarks in a bag
- The deuteron
 - 2.2 MeV bound
 - The only clear-cut "dibaryonic molecule"
 - Recall the *nn*, *pp*, and *np* strong spin singlet states are unbound...
 - ... by only ~100 keV
 - One of the great "fine-tuning" mysteries of nature!!

³S₁

NA Two-baryon resonances

- Binding?
- Width: 'narrow' or 'wide'?
- Spin, Isospin ?

$$\Delta \Delta I (J^{P}) = 0 (3^{+})$$

I (J^P)

Recent WASA@COSY claim of discovery

$$N\Delta$$
 $I(J^P)=1(2^+)_{(?)}$ = CLAS study: new observations

NA Some Thresholds

$m_{\Delta} + m_N = 1232 + 939 = 2171 \text{ MeV}$ $m_d + m_{\pi} = 1875 + 140 = 2015 \text{ MeV}$ 156 MeV

The decay of $N\Delta$ to $d\pi$ liberates about 156 MeV at the centroid of the (quasi-) bound state.

For comparison: $m_{\Delta} + m_{\Delta} = 2 \times 1232 = 2464 \text{ MeV}$

NA Theoretical Expectations

- "Y=2 states in SU(6) theory"
 - F. Dyson & N. Xuong, PRL (1964)
 - I=1 J=2 state and I=2 J=1 state in 27 multiplet
- "Multi-quark states Q⁶ dibaryon resonances"
 - Mulders, Aerts, De Swart, PRD (1980)
 - Bag model: N∆ state in a ⁵S₂ configuration decaying to the ¹D₂ NN partial wave channel
- "Flavor octet dibaryons in the quark model"
 - M. Oka PRD (1988)
- One-gluon exchange color magnetic interaction
 leads to certain strange dibaryons

NA Theoretical Expectations

- "NN core interactions...from1 gluon exchange"
 - T. Barnes, S. Capstick, M.D. Kovarik, E.S. Swanson, PRC (1983)
 - OGE and quark-exchange model
 - Deuteron and N∆ states not found, but "molecular" (weakly bound) ∆∆ was found
 - "Deeply-bound dibaryon resonances"
 - K. Maltman, Nucl Phys (1984)
 - QCD-like potential model with hyperfine effects
 - I=0 S=3, well below the $\Delta\Delta$ & $N\Delta\pi$ thresholds

NA Theoretical Expectations

- "3-body model calculations of $N\Delta$ and $\Delta\Delta$ dibaryon resonances"
 - A. Gal, H. Garcilazo, Nucl. Phys. A928 73 (2014)
 - πNN model with separable pairwise interactions
 - Solve πNN and $\pi N\Delta$ Faddeev equations
 - $\mathcal{D}_{12} N\Delta$ found for $I(J^P) = 1(2^+) \& 2(1^+)$
 - $\mathcal{D}_{03} \Delta \Delta$ found for $I(J^P) = O(3^+) \& 3(0^+)$

Figure 2: Diagrammatic representation of the πNN Faddeev equations solved in the present work to calculate $N\Delta$ dibaryon resonance poles.

■Evidence for ∆∆ ("D₀₃") ■WASA-at-COSY experiments (Jülich)

P. Adlarson et al, Phys Rev Lett 106, 242302 (2011) ...and numerous others since.

$M d^{*}(2380)$ Resonance in I (J^P) = 0 (3⁺)

- The WASA@COSY result for $\Delta\Delta$ state
- M ~ 2370 MeV
 - $= 2m_{\Delta} 90 \text{ MeV}$
- $\Gamma \sim 70 \text{ MeV} < 1/3 \Gamma_{\Delta\Delta}$
- AA state interpretation has been disputed*

P. Adlarson et al, Phys Rev Lett 106, 242302 (2011) ...and numerous others since.

WASA@COSY d*(2380) Resonance

- Evidence for d*(2380) \mathcal{D}_{03} state in $NN \rightarrow d\pi\pi$ in several isospin channels
- SAID Analysis pole position: 2380(10) i40(5) MeV

P. Adlarson *et al.* (WASA-at-COSY Collaboration), Phys. Rev. C 88, 055208 (2013).
P. Adlarson *et al.* (WASA-at-COSY & SAID Data Analysis Center), Phys Rev C 90, 035204 (2014).

NA Scenario for $d^*(2380)$ Decay

- Interpretation of WASA/COSY results for reaction $p \ n \to d \ \pi^0 \ \pi^0$
- Interference mechanism in d* decay:
 - Sequential decay thru
 D₁₂ (I J^P = 1 2⁺) state
 D₀₃ → D₀₃ + π → d + (ππ)₀
 - σ channel ($\pi\pi$ S wave) • $D_{03} \rightarrow d + \sigma \rightarrow d + (\pi\pi)_0$

FIG. 1. The leading mechanisms for the reaction $pn \rightarrow d + (\pi \pi)_0$ in the ABC region. The three-momenta in the c.m. frame of two particles are indicated between the respective lines.

12

M.N. Platonova, V.I. Kukulin, Phys Rev C 87, 025202 (2013)

NA A Scenario for $d^*(2380)$ Decay

• Interference in decay of d^* (I J^P = 0 3⁺):

- Sequential decay thru \mathcal{D}_{12} (I J^P = 1 2⁺) state • $\mathcal{D}_{03} \rightarrow \mathcal{D}_{12} + \pi \rightarrow d + (\pi\pi)_0$ • σ channel ($\pi\pi$ - s wave) • $\mathcal{D}_{03} \rightarrow d + \sigma \rightarrow d + (\pi\pi)_0$ σ mass and width small compared to PDG • sign of partial chiral
 - sign of partial chiral symmetry restoration in dense matter?

M.N. Platonova, V.I. Kukulin, Phys Rev C **87**, 025202 (2013) P. Adlarson (Wasa@COSY) *et al.*, Phys. Rev. Lett. 106, 242202 (2011)

• If a $\Delta\Delta$ (" \mathcal{D}_{03} ") state exists, so should $N\Delta$ • Expect $N\Delta$ to have $I J^{P} = 1 2^{+} (\mathcal{D}_{12})$

NA pp Elastic Scattering

- Partial Wave Analysis
- ¹D₂ wave in *pp* elastic
 scattering: structure at
 2148 i63 MeV
- Most prominent "resonance pole" seen in SAID analysis
- Textbook exercise: If an $N\Delta$ quasi-bound state exists, it can decay to pp ONLY if $J_{N\Delta}^{P} = 2^{+}$

R. Arndt, J. Hyslop, L. D. Roper, Phys Rev D 35, 128 (1987)

 $^{3}P_{2}$ wave in πd elastic scattering is most prominent

³P₂

150

300

SAID analysis: "resonance-like" behavior in several partial waves

R. Arndt, I. Strakovsky, R. Workman, Phys Rev C 50, 1796(1994)

N Λ S-matrix poles for $N\Delta(\mathcal{D}_{12})$		
Pole Position \mathcal{D}_{12} (MeV)	Model Approach	Ref.
2147 – i60	Faddeev model	A. Gal, H. Garcilazo, Nucl. Phys. A928 73 (2014)
2148 – i63	$pp(^{1}D_{2}) \leftrightarrow \pi d(^{3}P_{2})$ coupled channels	R.A. Arndt, J.S. Hyslop, L.D. Roper, Phys. Rev. D 35 (1987) 128.
2144 – i55	$pp(^{1}D_{2}) \leftrightarrow \pi d(^{3}P_{2})$ coupled channels	N. Hoshizaki, Phys. Rev. C 45 (1992), R1424, Prog. Theor. Phys. 89 (1993) 563.

NA Photoproduction Scenario

Resembles πd elastic scattering but with an off-shell pion.

Suppose it to be dominant at small -t

What can CLAS see?

Photons on a deuteron target

- g10, g13, g14 data sets
- Spin-1 photon & spin-1 deuteron:
 - $\vec{1} + \vec{1} \rightarrow \vec{J} = \vec{0}, \vec{1}, \vec{2}$ in S wave, is favorable
- Isospin I = $\{0,1\} + 0 \rightarrow 0, 1$ allowed
- We looked for both NA and $\Delta \Delta$ structures
- $\gamma d \rightarrow p p \pi^-$ messy mix of partial waves
- $\gamma d \rightarrow d \pi^+ \pi^-$ coherent exclusive

production: clean!

NA Parametric Monte Carlo

- $\gamma d \rightarrow \{d \pi\} \pi$ signal channel
- $\gamma d \rightarrow d \rho$ main background
- $\gamma d \rightarrow d \pi \pi$ phase space background
- Model the run conditions:
 - Bremsstrahlung photon beam
 - Reverse CLAS torus field
 - Assume t-channel dominance (slope 2 GeV²)

Parametric Monte Carlo

22

NA Parametric Monte Carlo

NA Parametric Monte Carlo

Preliminary CLAS data showing No sign of a " $\Delta\Delta$ " signal Evidence for p background Evidence for a " $N\Delta$ " signal

M $d\pi^+\pi^-$ Invariant Mass

- Gash at W = 2.46 GeV/ c^2 : known gap in CLAS coverage
- No $\Delta\Delta$ visible in CLAS/g13 (maybe not formed in γd)
- Recall WASA@COSY claims $\Delta\Delta$ at W = 2.37 GeV/c² in pn → $d\pi^+\pi^-$

R. A. Schumacher, Carneg P. Adlarson et al., Phys. Rev. C 88, 055208 (2013). 26

 $\gamma d \rightarrow d \rho, \rho \rightarrow \pi^+\pi^-$ background

NA Fit to Resonance-like Shapes

- Use narrow data slices in $W = \sqrt{s}$
- Assume a Breit-Wigner line shape
- Let $d\pi$ system decay to N Δ (L=0), $d\pi$ (L=1), and NN (L=2)
- p not cut away; model as
 P.S. background
- Incoherent amplitudes
- Following fits are prelude to PWA analysis

\mathbb{N} $\gamma d \rightarrow (d\pi) \pi 2.55 < W < 2.60 \text{ GeV}$

NA Fit to Resonance-like Shapes

$$\left[\frac{d\sigma}{dm} \sim \left\{\frac{1}{p_{\gamma d}^{cm}}\right\} \frac{m_0^2 \Gamma_i \Gamma_f}{(m_0^2 - m^2)^2 + m_0^2 (\Gamma_{N\Delta}^{L=0} + \Gamma_{\pi d}^{L=1} + \Gamma_{pp}^{L=2})^2}\right]$$

Let the fit "choose" the preferred shape from L=0,1,2

$$\Gamma_{\pi d}^{L=1} = \alpha_{\pi d} \Gamma_0 \left(\frac{q^{\pi d}}{q_0^{\pi d}}\right)^{2L+1=3} \left(\frac{m}{m_0}\right) (B'_{L=1}(q,q_0))^2 = \Gamma_f \triangleq \Gamma_f$$

 $\Gamma_{pp}^{L=2} = \alpha_{pp} \Gamma_0 \left(\frac{q^{pp}}{q^{pp}} \right)^{2L+1=5} \left(\frac{m}{m} \right) (B_{L=2}(q,q_0))^2$

$$\Gamma_{N\Delta}^{L=0} = \alpha_{N\Delta} \Gamma_0 \left(\frac{q^{N\Delta}}{q_0^{N\Delta}} \right)^{2L+1=1} \left(\frac{m}{m_0} \right) (B_{L=0}^{\prime}(q,q_0))^2 \xrightarrow[\text{Non-relativistic}]{\text{Non-relativistic}} \alpha_{N\Delta} \Gamma_0 \left(\frac{m}{m_0} \right) (1)$$

NA Observations

- Peaks are all below the NA centroid, but widths are not identical: $\cos \theta_{\pi}$ dependent
- Very preliminary result:
 - $m_{peak} = 2115 \pm 10 \text{ MeV/c}^2$
 - FWHM = 125 ± 25 MeV
- We have remaining acceptance issues near high and low edges
- Fits "choose" non-relativistic BW line shapes with $\Gamma_{\pi d}^{L=1} \triangleq \Gamma_i$ numerator only few % L = 1, 2 decay branches denominator

NA Summary/Conclusion

Big π[±]d signal seen in CLAS photoproduction data, peaking below the NΔ mass.

- Strongest at forward pion angle.
- Resonance mass and width depends on line-shape model, p treatment, amplitude interferences...
- We are NOT now claiming that this $d\pi$ -system bump is necessarily the expected resonant \mathcal{D}_{12} state... but it could be. Caveats:
 - Final/initial state interactions, other dynamics...
 - Scattering matrix poles vs. peaks in spectra...

NA Supplemental slides

NA Why not Deuteron Breakup?

- Would the system survive on the way to forming an N Δ State?
 - Fermi motion helps!
- Let $\gamma d \rightarrow NN^*(1520) \rightarrow N\Delta\pi$, <170 MeV/c Fermi motion, and let N^* decay along z-axis

N Λ Theory Approaches for $\Delta\Delta$

- Group theory predicts both states I J^P = 0 3⁺ (D₀₃ a.k.a. d*) and I J^P = 3 0⁺ (D ₃₀)
- Hidden-color configurations make both bound, but D 03 more so:
 - Chiral-quark model
 - 2393 vs. 2440 MeV
 - Quark Delocalization
 Color Screening Model
 2357 vs. 2423 MeV

FIG. 1. The potentials of S-wave $\Delta \Delta$ for $IJ^P = 03^+$ and $IJ^P = 30^+$ cases within two quark models.

H. Huang, J. Ping, F. Wang, Phys Rev C 89, 034001 (2014)

NA Theory Approaches for $\Delta\Delta$

- Most exotic interpretation for d* (I J^P = 0 3⁺): a "hexa-quark" dominated structure
- Chiral Quark Model with Resonating Group Method
 - Mass 2.38 to 2.42 GeV
 - 2/3 hidden color
 configuration (CC)

- RMS size 0.76 0.88 fm (!!) Relative wave functions in the extended chiral SU(3) quark model with f/g=0 for deuteron (left) and d* (right).
- "Narrow" (~70 MeV), since CC component does not break up directly

F. Huang, ZY Zhang, PN Shen, WL Wang, arXiv:1408.0458 (2014)

CLAS Experiment

- Photoproduction:

Targets: unpolarized LH₂, polarized p, & HD-ice Beams: unpolarized, circular, linear, to ~5 GeV • Reconstructed $K^+p\pi^-(\pi^0)$ or $K^+\pi^+\pi^-(n)$ • 20×10^9 triggers $\rightarrow 1.41 \times 10^6$ KY π events in g11a Electroproduction: Q² from ~0.5 to ~3 (GeV/c)² Structure functions from Rosenbluth and beamhelicity separations