Cosmic Ray Muons and You

Reinhard Schumacher

Professor of Physics

Carnegie Mellon University

Allegheny Observatory, Nov.20, 2015

Outline

- What are Cosmic Rays?
- What are Muons?
- Radiation exposure due to cosmic rays
- Detecting Cosmic Rays and other radiation
- Cosmic ray muon intensity and the weather

BC: Johnny Hart

Viktor Hess: 1911-1913 work

- Electroscopes...
- Natural radiation in the earth: was expect to to lessen at heights
- Eiffel Tower test : nope...
- Viktor Hess' daring balloon flights with electroscopes
 - Up to 5.3 km!
 - Intensity more than doubles
- Some radiation is of extraterrestrial origin!
- Nobel Prize 1936

Cosmic ray rate (intensity) vs. altitude

Yes, but what is this radiation?

- At the top of the atmosphere:
 - Protons
 - Anti-particles
 - AMS / Space Station
- In between
 - Particle "showers"
- At ground level
 - Muons ← our main topic!
 - Neutrons

"Primary" Cosmic Rays

- Mostly Protons: stable, live forever
- Bits of lots of other stuff: electrons, helium nuclei... iron nuclei, anti-particles...
- Alpha Magnetic Spectrometer (AMS-02) on International Space Station
 - Taking a census of everything arriving at earth

Where do cosmic rays come from?

- We don't know.
- Not the sun.
- Galactic magnetic fields scramble paths
- Solar wind particles: Aurora
- Cosmic rays: ongoing mystery

Role of the Sun in Aurorae

Indirect Role of the Sun on Cosmic Rays

Incoming Cosmic Ray μ^{-}

<u>KEY</u>

Proton

Neutron

Pion

Electron

Muon

Photon

Cosmic Ray Showers

- High energy cosmic rays cause a cascade of particle production in the atmosphere
- Muons have the most bang for (energy) buck: penetrate to the surface (and below)
- Rate: 180 particles/m²/sec

The Muon: "Who ordered that?"

• Very much like a "heavy electron":

- Charged "+" or "-"
- 206 times more massive than the electron

- Unstable: decays in 2.2 microseconds to an electron or positron and two neutrinos
- A type of "ionizing radiation" because it can rip electrons off atoms

Deep Underground Muons:

- -Go deep to escape cosmic ray muons
- -See instead muons created by neutrinos

Human Exposure to Ionizing Radiation

Source	Place	Exposure	Units
Cosmic Rays	Sea Level	26	milli-rem / year
	Pittsburgh	30	u
	Denver	50	u
Ground		35	u
Food (14C, 40K)		40	u
Air (Radon)		200	u
TOTAL		~ 300	u
Workplace Limit (US)		5,000	и
Air travel / hour		0.5 / hour	milli-rem
Chest X-ray		10	u
Chest CT scan		700	ш
Dental X-ray		~ 1	u
MRI scan (not ionizing!)		0	u
1/ 1 6 : / / 1		18	и
½ pack of cig's/day		10	

Does the intensity of cosmic ray muons depend on the weather?

Space conditions: magnetosphere effects

Atmospheric conditions: pressure, temperature, humidity, height...

Undergraduate Research Project

OPEN ACCESS

IOP PUBLISHING

JOURNAL OF PHYSICS G: NUCLEAR AND PARTICLE PHYSICS

J. Phys. G: Nucl. Part. Phys. **40** (2013) 065203 (11pp)

doi:10.1088/0954-3899/40/6/065203

Atmospheric Dependence of the Stopping Cosmic Ray Muon Rate at Ground Level

G. Bernero, J. Olitsky, and R. A. Schumacher*

Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA

 What is the correlation between atmospheric conditions {Pressure, Temperature, and "Height"} with the rate of muons at ground level?

Detectors: Geiger Counter

(Method 1)

Detectors: Scintillator & Photomultiplier

(Method 2)

Experimental Setup

Experimental Setup

Weather Conditions

- Allegheny County airport aviation weather
 - Local barometric pressure (surface)
- NOAA/IGRA weather balloon data
 - Height of atmosphere at 10 kPa pressure
 - Temperature at 10 kPa pressure
- Space weather
 - We had no data source!

Muon Rate Correlations with Weather?

Linear Regression Model:

$$\frac{\Phi - \langle \Phi \rangle}{\langle \Phi \rangle} = \alpha \left(\frac{P - \langle P \rangle}{\langle P \rangle} \right) + \beta \left(\frac{H - \langle H \rangle}{\langle H \rangle} \right) + \gamma \left(\frac{T - \langle T \rangle}{\langle T \rangle} \right)$$

- Raw Data:
 - 5 months of averaged hourly readings of P, T, H, and Φ
 - Surface pressure (~ 101 kPa)
 - Temperature at 10 kPa pressure (~ 207 K)
 - Height of atmosphere at 10 kPa level (~ 16.6 km up)
 - Muon flux
- Two categories of muons:
 - Slow muons stop in scintillator (kinetic energy < 150 MeV)
 - Fast "in-flight" muons barrel right through the detector

Raw Data: 5 months of readings

7 weeks of smooth, "clean" data

Effect of space weather: Forbush fluctuations

 blame the sun and Earth's magnetosphere

For stopping muons

Nice fit of model to 7 weeks of "clean" data!

For in-flight muons

7 weeks of smooth, "clean" data

Effect of space weather: Forbush fluctuations

 blame the sun and Earth's magnetosphere

For in-flight muons

Very good fit of model to 7 weeks of "clean" data!

Weather affects stopping muons more strongly

Experimental Results

Pressure rises \rightarrow Muon rate falls

Atmosphere Expands → Muon rate falls

Atmosphere Warms → Muon rate rises

Parameter	Eq. 1	Stopped	Total Particles
		Muons	
Pressure	α	-3.2 ± 0.5	-1.94 ± 0.10
Altitude	$oldsymbol{eta}$	-2.7 ± 0.9	-0.8 ± 0.2
Temperature	γ	$+0.35\pm0.17$	$+0.08\pm0.04$
		$\chi_{\nu}^2 = 1.07$	$\chi_{\nu}^2 = 1.09$

Re-cap / Summary

- Cosmic rays are messengers from the galaxy and beyond... not from our sun; mostly protons
- Cosmic rays at Earth's surface are mainly muons from atmospheric "showers"
- Ionizing radiation due to cosmics: evidently we are evolved to tolerate it
- Muon intensity depends on atmospheric and space weather conditions: more-so for lowest energy muons

Supplemental Slides

Units for Ionizing Radiation

Unit	Conversions	Quantity
bequerel	1 Bq = 1 decay / second	Activity
curie	1 Ci = $3.7x10^{10}$ decays/sec	
rad	100 rad = 1 Gy	Absorbed dose (energy / mass)
gray	1 Gy = 1 Joule/kg	
rem	"Röntgen equivalent in man" (1 R of X-rays ~ 1 rem in tissue)	Equivalent dose (energy / mass)
sievert	1 Sv = 100 rem	
röntgen	1 Coulomb / kg of air = 3880 R	Exposure (charge / mass)