$\gamma p \rightarrow K^+\Lambda$ Differential Cross Section and Recoil Polarization Measurements from $g11a$

Michael E. McCracken1
Curtis A. Meyer2, Mike Williams2, Matthew Bellis2

1Department of Physics
Washington & Jefferson College

2Experimental Medium Energy Group
Carnegie Mellon University Physics Department

11 June 2009
CLAS Collaboration Meeting
Newport News, Virginia
OUTLINE

1 Motivation

2 g11a Statistics and Event Selection

3 Acceptance

4 Results

5 Conclusions
Excited Baryons and CQM Predictions

- The Constituent Quark Model is the currently accepted model of the baryon spectrum in the non-pQCD regime.
- Quark Model calculations of excited nucleon states have been made by Capstick and Roberts.
- However, many of the states predicted have never been conclusively observed → The Missing Baryon Problem
- Possible explanations for non-observation:
 - Missing resonances exist, but cross-sections are smaller than current experimental sensitivity
 - Missing resonances exist, but do not couple to $N\pi$ → most of the world’s data
 - Corrections to quark model...
Motivation

Why study $K^+\Lambda$?

- Self-analyzing Λ decay allows for measurement of all particle spins Σ, T, P_Λ, O_x, O_z, C_x, C_z
- A full characterization will allow for a comprehensive study of production mechanisms.
- Some N^* states have been observed to couple to $K^+\Lambda$
 - $S_{11}(1650)^{***}$, $D_{13}(1700)^{**}$, $P_{11}(1710)^{**}$, $P_{13}(1720)^{**}$, ...
- $I = \frac{1}{2}$ of the $K^+\Lambda$ final state couples only to N^*, NOT Δ^*
Why study $K^+\Lambda$?

- Self-analyzing Λ decay allows for measurement of all particle spins $\Sigma, T, P_\Lambda, O_x, O_z, C_x, C_z$
- A full characterization will allow for a comprehensive study of production mechanisms.
- Some N^* states have been observed to couple to $K^+\Lambda$
 - $S_{11}(1650)^{**}, D_{13}(1700)^{**}, P_{11}(1710)^{**}, P_{13}(1720)^{**}, ...$
- $I = \frac{1}{2}$ of the $K^+\Lambda$ final state couples only to N^*, NOT Δ^*
- A problem: discrepancies in previous $d\sigma$ results
 - These discrepancies lead to interpretation ambiguities
 - Most notable - CLAS shows large enhancement at $\sqrt{s} \approx 1.9$ GeV
Motivation

Why study $K^+\Lambda$?

-0.15 < cosθ < -0.05

M. McCracken (W & J)
Why study $K^+\Lambda$?

![Graph showing the cross-section σ in microbarns (μb) as a function of the square root of the energy \sqrt{s} in GeV.]

g11a Collection and Statistics

- *g11a* is a relatively high-statistics photon on liquid hydrogen dataset taken by the CLAS detector from May-July 2004.
- Tagged, unpolarized bremsstrahlung from 4.023 GeV end-point energy electron beam
- Event trigger - coincidence between:
 - CLAS Level 1 - coincidence of 2 charged tracks (TOF and start-counter, sector-wise)
 - Photon tagger - recoil electron in any of the 40 highest-energy T-counters ($E_\gamma \geq 1.58$ GeV)
 - lower photon energies are recorded due to coincidental higher-energy photons
- $\approx 20 \times 10^9$ triggers
- Able to extract $d\sigma$ and P_Λ for $1.62 \text{GeV} < W < 2.84 \text{GeV}$. (Previous measurements up to 2.5 GeV and 2.3 GeV, resp.)
Event Selection

- We access the $K^+\Lambda$ final state by considering the charged decay mode of the Λ ($\Lambda \rightarrow p\pi^-$).
- In order to test our understanding of CLAS acceptance, we produce two separate analyses of the data...
Event Selection: \(pK^+\pi^- \) Topology

- Consider all events with "+ : + : −" final-state charge
- Assign "\(p : K^+ : \pi^- \)" and "\(K^+ : p : \pi^- \)" mass hypotheses
- Kinematic fit to \(\gamma p \rightarrow K^+ p\pi^- \)
 - Remove events with confidence levels < 1%
- Remaining background is removed with two-dimensional cuts on calculated masses
 - \(K^+ \) and \(p \) masses calculated from tracking and timing
 - \(m_K < 0.8 \text{ GeV} \) OR \(m_p > 0.8 \text{ GeV} \)
- Fiducial cuts
- After all cuts, the three-track topology contains \(6.67 \times 10^5 \) events
- Less than 2% background in all \(\sqrt{s} \) bins (most below 1%)
- Binning: 10-MeV-wide in \(\sqrt{s} \)
Event Selection: \(pK^+\pi^- \) **Topology**

![Histogram of missing mass off K+ (GeV/c^2)](image_url)
Event Selection: $pK^+(\pi^-)$ Topology

- Only $\approx 28\%$ of the $g11a$ dataset used
- Consider all events with “$+:+$” final-state charge
- Assign “$p:K^+$” and “$K^+:p$” mass hypotheses
- Kinematic fit to $\gamma p \rightarrow K^+ p (\pi^-)$ (missing π^-)
 - Remove events with confidence levels $< 5\%$
- Two-dimensional cuts on calculated masses applied
- Background is further reduced with M. Williams’ event-based subtraction
- Fiducial cuts
- After all cuts, the two-track topology contains 1.66×10^6 events
- Binning: 10-MeV-wide in \sqrt{s}
Acceptance

- Generated $300 \times 10^6 \gamma p \rightarrow K^+ \Lambda$ events from phase-space dists.
- Processed events with GSIM (GSIM models $\Lambda \rightarrow p\pi^-$)
- Apply correction for Λs that decay outside of start counter
 - $c\tau_\Lambda = 7.89$ cm, ST ≈ 10 cm
- Applied identical analysis and fiducial cuts
- No physics model...
Data Expansion/Mother Fit

- BUT, it is unlikely that nature obeys only phase-space!
- Expand the data in a large set of basis states (replaces a physics model)
- Generate s-channel $\gamma p \rightarrow J^P \rightarrow K^+ \Lambda \rightarrow K^+ p \pi^-$ amplitudes for each data and accepted and raw MC event
 - qft++
 - $\frac{1}{2}^\pm \leq J^P \leq \frac{11}{2}^\pm$ as “complete basis”
 - each amplitude has 2-3 free parameters
- Un-binned maximum log-likelihood fit in each \sqrt{s} bin
- We then weight the acc/raw MC by the fit results
 - Weighted acc matches data in all observables
 - Weighted raw shows data before detector acceptance
- NOT interpreted as physics!
Data Expansion/Mother Fit
Extracting $d\sigma$

- With η, $d\sigma$ is calculated in the usual way
 - 0.1-wide $\cos \theta_{CM}^{K}$ bins, $-0.95 \leq \cos \theta_{CM}^{K} \leq 0.95$
 - results presented at bin centroids (non-zero acceptance)

- Normalization is handled with $gflux$ package

- Systematic Uncertainty

<table>
<thead>
<tr>
<th>Error</th>
<th>$pK^{+}\pi^{-}$ $\sqrt{s} < 1.66$ GeV</th>
<th>$pK^{+}(\pi^{-})$ $\sqrt{s} \geq 1.66$ GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particle ID</td>
<td>0.11%</td>
<td>3.4%</td>
</tr>
<tr>
<td>Confidence Level Cuts</td>
<td>3%</td>
<td>3%</td>
</tr>
<tr>
<td>Acceptance</td>
<td>3%-6%</td>
<td>3%-6%</td>
</tr>
<tr>
<td>Normalization</td>
<td>7.9%</td>
<td>7.9%</td>
</tr>
<tr>
<td>Target Characteristics</td>
<td>0.2%</td>
<td>0.2%</td>
</tr>
<tr>
<td>$\Lambda \rightarrow p\pi^{-}$ Branching Fraction</td>
<td>0.5%</td>
<td>0.5%</td>
</tr>
</tbody>
</table>
| Total | 9%-10.4% | 10%-11% | 9%-10.4%
Extracting P_Λ

- P_Λ can be extracted from our data expansion
 - Amplitudes from the expansion contain the Λ decay
 - Amplitudes are written in terms of the particle spins projected along the z-axis (beam-line)
 - Simple Pauli matrix application allows us to project the out-of-plane polarization given the amplitudes and fit results
 - Same binning as $d\sigma$

- Systematic Uncertainty
 - 0.05 estimated from acceptance study
g11a Internal Agreement

We find excellent agreement between the two- and three-track topologies!

\[
0.45 < \cos\theta < 0.55
\]

\[
d\sigma/d\cos\theta_{CM} (\mu b)
\]

- **g11a two-track**
- **g11a three-track**
We find excellent agreement between the two- and three-track topologies!

\[0.55 < \cos\theta < 0.65 \]
g11a Internal Agreement

We find excellent agreement between the two- and three-track topologies! For comparisons to other measurements, we calculate a weighted mean of the two results...
Results: \(d\sigma / d \cos \theta_{\text{CM}}^K \)

\[-0.85 < \cos \theta < -0.75\]

- **g11a average**
- **CLAS g1c Bradford 2005**
- **SAPHIR Glander 2003**
- **LEPS Hicks 2007**
- **LEPS Sumihama 2006**

\[g11a \ \gamma p \rightarrow K^+ \Lambda \]
Results: \(\frac{d\sigma}{d\cos\theta^K_{CM}} \)

\(-0.25 < \cos\theta < -0.15\)

\(W\) (GeV)

- 1.6
- 1.8
- 2
- 2.2
- 2.4
- 2.6
- 2.8

\(d\sigma/d\cos\theta_{CM}\) (\(\mu\)b)

- 0
- 0.2
- 0.4
- 0.6
- 0.8
- 1
- 1.2
- 1.4

- g11a average
- CLAS g1c Bradford 2005
- SAPHIR Glander 2003
- LEPS Hicks 2007
- LEPS Sumihama 2006
Results: $d\sigma / d\cos \theta^K_{CM}$

$0.05 < \cos \theta < 0.15$

W (GeV)

1.6 1.8 2 2.2 2.4 2.6 2.8

θ

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

$\mu (CM\theta/d\cos\sigma d)$

g11a average

- CLAS $g1c$ Bradford 2005
- SAPHIR Glander 2003
- LEPS Hicks 2007
- LEPS Sumihama 2006

M. McCracken (W & J)
Results: \(\frac{d\sigma}{d\cos \theta_{CM}^K} \)

\[0.35 < \cos \theta < 0.45 \]

- \(\sigma/\cos \theta \)

- Graph showing data points for different experiments:
 - g11a average
 - CLAS g1c Bradford 2005
 - SAPHIR Glander 2003
 - LEPS Hicks 2007
 - LEPS Sumihama 2006

M. McCracken (W & J)
Results: P_Λ

- $-0.55 < \cos \theta < -0.45$

![Graph showing the distribution of P_Λ vs. W (GeV) with data points and error bars for different experiments.](image)
Results: P_Λ

\begin{align*}
W (\text{GeV}) & \quad 1.6 & 1.8 & 2 & 2.2 & 2.4 & 2.6 \\
\Lambda P \quad -1 & -0.5 & 0 & 0.5 & 1 & < -0.05 & \theta < -0.15 < \cos \theta < -0.05
\end{align*}

-0.15 < cosθ < -0.05

$g11a$
- CLAS McNabb 2004
- SAPHIR Glander 2004
- GRAAL Lleres 2007

$\gamma p \rightarrow K^+ \Lambda$

M. McCracken (W & J)
RESULTS: P_Λ

$0.15 < \cos \theta < 0.25$

P_Λ

- $0.15 < \cos \theta < 0.25$
- $\gamma p \rightarrow K^+ \Lambda$
- g11a
- CLAS McNabb 2004
- SAPHIR Glander 2004
- GRAAL Lleres 2007
Results: P_Λ

$0.45 < \cos \theta < 0.55$

- W (GeV): 1.6, 1.8, 2, 2.2, 2.4, 2.6, 2.8
- ΛP: -1, -0.5, 0, 0.5, 1

- θ: $0.45 < \cos \theta < 0.55$

- g11a
- CLAS McNabb 2004
- SAPHIR Glander 2004
- GRAAL Lleres 2007

M. McCracken (W & J)
Results: P_Λ

$0.75 < \cos\theta < 0.85$

- g_{11a}
- CLAS McNabb 2004
- SAPHIR Glander 2004
- GRAAL Lleres 2007
Results: Total Cross Section

- **g11a**
- **CLAS - Bradford (05)**
- **SAPHIR - Glander (04)**
- **ABBHHM**

The graph shows the total cross section in micrometers (µb) as a function of the square root of energy (GeV) for different models. The data points are plotted with error bars, illustrating the variation in cross section at each energy level.
Conclusions

- g11a results provide $\approx 30\%$ extension of kinematic range and increase in precision for $\gamma p \rightarrow K^+\Lambda$ reaction.
- Independent two- and three-track analyses show good agreement.
- g11a $d\sigma$ measurements agree with previous CLAS results, as well as LEPS data.
- $d\sigma$ results confirm interesting structure, especially at $W \approx 1.9$ GeV.
- P_Λ measurement shows agreement with previous measurements with a significant increase in range and precision.
- P_Λ shows many interesting structures!
- To be submitted to Phys. Rev. C. (*ad hoc* review in prog.)
- Thanks to the CLAS Collaboration!