
Carnegie Mellon Department of Physics Fall 2011

Graduate Written Qualifying Exam

Day 2 – Modern Physics

Tuesday, August 23, 2011

*** Please read carefully before beginning ***

On day 2 of this exam you are asked to work three problems, eachof which has several parts.

Work each problem in a separate blue exam book. Write your name and the problem number on
the front cover of each.

In order to get full credit you must show all your work, eitherby showing all relevant steps of a calculation
or, where applicable, by giving a clear and logically consistent explanation. Correct answers with no
supporting calculation or explanation will receive littleor no credit. In case of an incorrect final answer,
partial credit will be given if a correct approach to the problem is evident.

Note that you are expected to work all the problems covered inthe exam.

Many of the problems only need a few lines of calculation. If you find yourself in a lengthy calcula-
tion, stop and move on. If something appears unclear, don’t hesitate to ask.

Good Luck!



Expressions, formulae, physical constants, integrals, etc
(which you may find useful although you may not need all of them)
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ǫ0 = 8.854× 10−12 C2/N m2 µ0 = 4 π × 10−7 N s2/C2

c = 1/
√
ǫ0µ0 = 3.0× 108 m/s e = 1.602× 10−19 C

h = 6.626× 10−34 J s h̄ = h/2π = 6.582× 10−22 MeV s

h̄c = 197 MeV fm = 197 eV nm (h̄c)2 = 0.389 GeV2 mbarn

me = 0.511 MeV/c2 mproton = 938 MeV/c2

1 eV =1.602× 10−19 J 1 eV/c2 = 1.783× 10−36 kg

kB = 1.381× 10−23 J/K kB = 8.617× 10−5 eV/K



Quantum Mechanics

In calculating electronic structure of ring-shaped molecules, one is led to consider simplified models. For
example, take two identical fermions of massm and spin 1/2, moving on a ring of radiusa, with spins
constrained to pointup. The particles can interact through a potential of form

V (φ1, φ2) = A cos(φ1 − φ2)

whereφ1 andφ2 are angular positions of the two particles.

First assume A = 0

(a) Solve for the eigenfunctions and energies of this two particle system. [ Hint: the only dynamics in this
system are the constrained motion (kinetic energy) of a particle going in a circle. The Hamiltonian for
each particle may therefore be written as a rigid rotatorĤ = L̂2

z/2mr
2 ]

(b) State the degeneracies of the ground and 1st excited states.

Now assume A is nonzero but weak,A≪ h̄2/(2ma2)

(c) Find the energies and degeneracies of the ground state from (b), to first order in A.



Statistical Mechanics

Atoms on a solid surface can form a two dimensional ideal gas (as well as a wide variety of ordered
phases). By controlling the temperature and vapor pressure above the surface, one can control the density
of atoms on the surface (the two dimensional density isn = N/A, whereN is the number of atoms on the
surface andA is the area of the surface). The energy of an atom on the surface is

E = −ǫ0 +
∑

i=1,2

p2i
2m

(1)

whereǫ0 is the adsorption energy or binding energy holding the atom on the surface.

Reminders of quantities in three dimensions:
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= V λ−3, (4)

whereP is the vapor pressure,µ is the chemical potential, andZ1 is the partition function for a single
atom of mass,m. kB is Boltzmann’s constant andh is a constant with units of energy times time.

a) Using Eq. 1 for the energy, evaluate the partition function for one atom in a classical two dimensional
ideal gas. Check your answer by comparing with Eq. 4.

b) What is the partition function for a classical two dimensional ideal gas ofN identical particles?

c) From (b), evaluate the Helmholtz free energy; simplify your expression and show that it is extensive in
the limit of large numbers of atoms.

d) What is the equation of state analogous to Eq. 2?

e) What is the chemical potential?

f) Finally, relate the three dimensional vapor pressure to the two dimensional density of atoms in equilib-
rium at temperature,T .



General Physics

Accretion of Planets

A number of recently discovered extrasolar planet candidates have surprisingly small orbits, which may
indicate that considerable orbital migration takes place in protoplanetary systems. A natural consequence
of orbital migration is for a series of planets to be accreted, destroyed, and then thoroughly mixed into the
envelope of the central star. Stars may frequently swallow planets during the early phase of their evolution.
The aim of this problem is to estimate the response of the starto such accretion.

The star has mass,M , and radiusR (with the center of the star atR = 0) and constant density, such that
ρ = 3M/(4πR3). Assume that a planet of massm << M and radiusrp << R is accreted by the star
from a circular orbit which just grazes the stellar surface.

(a) A planet of massm in a circular orbit of radiusR around a star of massM has an orbital energy which
is composed of both kinetic and potential energy. These two components obey aVirial Equation. State the
virial equation for this circular orbit. What is the (total) orbital energy in terms of gravitational potential
energy,Ω? Is the orbital energy of such a system positive or negative?

(b) As the planet is accreted by the star, the total energy (W ) of the star increases by some amount∆W .
Let this amount be due to the orbital energy of the planet justas it is accreted. What is∆W in terms of
M,m, andR (andG the gravitational constant)?

(c) Derive the expression for gravitational potential energy of the star in terms ofM andR. To do this you
can write the gravitational potential energy for a spherical shell within the star. The shell is at radiusr,
has thicknessdr, massdM and encloses a massM(r). Write dm andM(r) as a function ofρ andr and
integrate over the star to determine to totalΩ.

(d) Show that for a planet with properties similar to those ofJupiter (mass10−3M⊙ , radius0.1R⊙) and
the star similar to the Sun, the dominant contribution to thechange in the stellar energy comes from
the planet’s orbital energy rather than its gravitational binding energy (the negative of the gravitational
potential energy).

(e) Once the star has accreted the planet, its mass has increased bym and its radius may have changed by
some amount∆R. By how much has its gravitational potential energy changed (∆Ω) from what it was
before the accretion? Derive an expression for∆Ω to first order in the small quantitiesm/M and∆R/R.

(f) A star in equilibrium also satisfies the Virial equation stated in (a). In the case of a star (which under
most circumstances can be considered an ideal gas) the kinetic energy of a star is the same as its thermal
energy. Using the thermodynamic relations between pressure and energy, i.e.γ-law relation, we can write
the virial equation (which need not be derived) for our star such that

∆Ω =
3(γ − 1)

3γ − 4
∆W , (5)



whereγ is the ratio of specific heats at fixed pressure and volume for the star.

(i) Using the virial equation above, what values ofγ are allowed for a dynamically stable star (a star that
neither explodes nor collapses)?

(ii) Use the virial equation above and your answer to (b), to solve for the fractional change in radius
(∆R/R) in terms ofm/M andγ.

(iii) Calculate∆R/R that would be caused by the accretion of Jupiter (ifγ = 5/3) onto the Sun. Does
accretion cause the star to expand or contract? Why?


