Carnegie Mellon Department of Physics Fall 2011

Graduate Written Qualifying Exam

Day 2 — Modern Physics

Tuesday, August 23, 2011

*** Please read carefully before beginning ***

On day 2 of this exam you are asked to work three problems, @aeghich has several parts.

Work each problem in a separate blue exam book. Write your nane and the problem number on
the front cover of each.

In order to get full credit you must show all your work, eithigrshowing all relevant steps of a calculation
or, where applicable, by giving a clear and logically cotesis explanation. Correct answers with no
supporting calculation or explanation will receive litde no credit. In case of an incorrect final answer,
partial credit will be given if a correct approach to the devb is evident.

Note that you are expected to work all the problems coveré¢darexam.
Many of the problems only need a few lines of calculation. If ya find yourself in a lengthy calcula-

tion, stop and move on. If something appears unclear, don’t ésitate to ask.

Good Luck!



Expressions, formulae, physical constants, integrals, etc
(which you may find useful although you may not need all of them

Bose/Fermi distribution funCtlonm

Py(z) =1 P(x)=x Py(x) = %(31‘2 —1) Ps(x) = %(51‘3 — 3z)

]{ F(2)dz = 270 3" Res [f] I (N1) ~ N In(N)~ N, for N> 1
C

€0 = 8.854 x 10712 C?/Nm? po =47 x 1077 Ns?/C?

c=1/\/eoto = 3.0 x 10 m/s e=1.602x 1071 C

h=6.626 x 1073*Js

he =197 MeV fm = 197 eV nm
m. = 0.511 MeV/c?
1eV=1.602x10"1J

kp = 1.381 x 10723 J/IK

h=h/2m = 6.582 x 1072 MeV's
(fic)? = 0.389 GeV* mbarn
Miproton = 938 MeV/c?

leVE? =1.783 x 10730 kg

kp = 8.617 x 1075 eV/IK



Quantum Mechanics

In calculating electronic structure of ring-shaped molespone is led to consider simplified models. For
example, take two identical fermions of massand spin 1/2, moving on a ring of radias with spins
constrained to poindp. The particles can interact through a potential of form

V (1, p2) = Acos(¢r — ¢2)
where¢; and¢, are angular positions of the two patrticles.
Firstassume A=0

(a) Solve for the eigenfunctions and energies of this twaigarsystem. [ Hint: the only dynamics in this
system are the constrained motion (kinetic energy) of dghargoing in a circle. The Hamiltonian for
each particle may therefore be written as a rigid rotafor 1> 2 /2mr? |

(b) State the degeneracies of the ground and 1st excitex$ stat
Now assume A is nonzero but weakd < /?/(2ma?)

(c) Find the energies and degeneracies of the ground stewe(l), to first order in A.



Statistical Mechanics

Atoms on a solid surface can form a two dimensional ideal gasaell as a wide variety of ordered
phases). By controlling the temperature and vapor prestaneedhe surface, one can control the density
of atoms on the surface (the two dimensional density4s N/A, whereN is the number of atoms on the
surface and is the area of the surface). The energy of an atom on the sugac

p?
E=—e+ - 1)
S 2m

wheree, is the adsorption energy or binding energy holding the atarthe surface.

Reminders of quantities in three dimensions:

P = %kBT 2

p = kpT'In[P/Fy(T)] 3)
3/2

2= v () < @

where P is the vapor pressure, is the chemical potential, and, is the partition function for a single
atom of massin. kg is Boltzmann’s constant anfdis a constant with units of energy times time.

a) Using Eqg. 1 for the energy, evaluate the partition fumct@ one atom in a classical two dimensional
ideal gas. Check your answer by comparing with Eq. 4.

b) What is the partition function for a classical two dimemsibideal gas ofV identical particles?

c) From (b), evaluate the Helmholtz free energy; simplifyiyexpression and show that it is extensive in
the limit of large numbers of atoms.

d) What is the equation of state analogous to Eq. 27?
e) What is the chemical potential?

f) Finally, relate the three dimensional vapor pressurééotivo dimensional density of atoms in equilib-
rium at temperaturél.



General Physics

Accretion of Planets

A number of recently discovered extrasolar planet cand&lative surprisingly small orbits, which may
indicate that considerable orbital migration takes plaigerotoplanetary systems. A natural consequence
of orbital migration is for a series of planets to be accretiegtroyed, and then thoroughly mixed into the
envelope of the central star. Stars may frequently swallewgis during the early phase of their evolution.
The aim of this problem is to estimate the response of thessuch accretion.

The star has masg/, and radiusk (with the center of the star & = 0) and constant density, such that
= 3M/(4wR?). Assume that a planet of mass << M and radius-, << R is accreted by the star
from a circular orbit which just grazes the stellar surface.

(a) A planet of mass: in a circular orbit of radiug? around a star of masg has an orbital energy which
is composed of both kinetic and potential energy. These twgponents obey ¥rial Equation. State the
virial equation for this circular orbit. What is the (total)bital energy in terms of gravitational potential
energy2? Is the orbital energy of such a system positive or negative?

(b) As the planet is accreted by the star, the total endigy ¢f the star increases by some amoit’.
Let this amount be due to the orbital energy of the planetgsst is accreted. What iAW in terms of
M,m, andR (andG the gravitational constant)?

(c) Derive the expression for gravitational potential giyeof the star in terms af/ and R. To do this you
can write the gravitational potential energy for a sphemsteell within the star. The shell is at radius
has thicknesdr, massiM and encloses a masg(r). Write dm and M (r) as a function op andr and
integrate over the star to determine to tdial

(d) Show that for a planet with properties similar to thosdupiter (mass0-3M,, , radius0.1R) and
the star similar to the Sun, the dominant contribution to ¢hange in the stellar energy comes from
the planet's orbital energy rather than its gravitationading energy (the negative of the gravitational
potential energy).

(e) Once the star has accreted the planet, its mass hassedrean and its radius may have changed by
some amouni\R. By how much has its gravitational potential energy changed)(from what it was
before the accretion? Derive an expression/él to first order in the small quantities /M andAR/R.

(f) A star in equilibrium also satisfies the Virial equaticated in (a). In the case of a star (which under
most circumstances can be considered an ideal gas) théckemetrgy of a star is the same as its thermal
energy. Using the thermodynamic relations between pressut energy, i.ey-law relation, we can write
the virial equation (which need not be derived) for our starhsthat

MAW (5)

AQ =
3y —4 ’



wherey is the ratio of specific heats at fixed pressure and voluméhtostar.

(i) Using the virial equation above, what values oére allowed for a dynamically stable star (a star that
neither explodes nor collapses)?

(i) Use the virial equation above and your answer to (b), dtves for the fractional change in radius
(AR/R) in terms ofm/M and~.

(iii) Calculate AR/ R that would be caused by the accretion of Jupiter (i 5/3) onto the Sun. Does
accretion cause the star to expand or contract? Why?



