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*** Please read carefully before beginning ***

On day 1 of this exam you are asked to work three problems, each of which has several parts.

Work each problem in a separate blue exam book. Write your name and the problem
number on the front cover of each.

In order to get full credit you must show all your work, either by showing all relevant steps of a
calculation or, where applicable, by giving a clear and logically consistent explanation. Correct
answers with no supporting calculation or explanation will receive little or no credit. In case of an
incorrect final answer, partial credit will be given if a correct approach to the problem is evident.

Note that you are expected to work all the problems covered in the exam.

Many of the problems only need a few lines of calculation. If you find yourself in a
lengthy calculation, stop and move on. If something appears unclear, don’t hesitate to
ask.

Good Luck!



Expressions, formula, physical constants, integrals, etc
(which you may find useful although you may not need all of them)
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ǫ0 = 8.854 × 10−12 C2/N m2 µ0 = 4π × 10−7 N s2/C2

c = 1/
√
ǫ0µ0 = 3.0 × 108 m/s e = 1.602 × 10−19 C

h = 6.626 × 10−34 J s ~ = h/2π = 6.582 × 10−22 MeV s

~c = 197 MeV fm = 197 eV nm (~c)2 = 0.389 GeV2 mbarn

me = 0.511 MeV/c2 mproton = 938 MeV/c2

1 eV = 1.602 × 10−19 J 1 eV/c2 = 1.783 × 10−36 kg

kB = 1.381 × 10−23 J/K kB = 8.617 × 10−5 eV/K



Quantum Mechanics

This problem concerns transitions from excited states of a hydrogen atom (2S and 2P) into the
ground state (1S). Electron spin can be neglected for the purposes of this problem, and some
orbital wave functions are given on the formula sheet. While answering the questions you may
encounter various integrals. Do not evaluate nontrivial integrals ! Instead, introduce clearly
defined symbolic notations for their values.

(a) An atomic orbital couples to electromagnetic fields via

W = WDE +WDM +WQE + · · ·

where

WDE = −qEZ, WDM =
−q
2m

BLx, WQE =
−q
2mc

E(Y Pz + ZPy).

(i) For atomic transitions in general, which of the three terms is the most important, and
why?

(ii) For each interaction, indicate if it allows or forbids a 2S → 1S transition and explain
why.

(iii) The interactions above omit the q2|A|2 term from the quantum Hamiltonian |p − qA|2.
How does the q2|A|2 term contribute to the 2S → 1S transition?

(b) Explain why the 2P level is relatively short lived (its lifetime τ is about 10−10 seconds).

(c) The wavefunction
ψ(t) = bα(t)e−iEαt/~|α〉 + bβ(t)e−iEβt/~|β〉

represents a superposition of states α=2S and β=2P. Their amplitudes vary as

i~ḃα = 0 i~ḃβ = −i~
τ
bβ,

where we have used the long lifetime of 2S to approximate bα as a constant, but we keep the
short lifetime τ of 2P leading to decay of bβ. These equations represent the time-dependent
Schrödinger equation in the subspace spanned by {α, β}.
Now apply a constant electric field Ẽ = E0ẑ to the atom and derive the new equations for ḃα
and ḃβ in terms of matrix elements that you need not evaluate. Note that ḃα becomes nonzero
and explain how this leads to a new mechanism for decay of the 2S state.

(d) Find the time constant for decay of 2S using your result of part (c). Since the energy difference
∆Eαβ = Eα − Eβ is rather small, you may simplify your calculations by setting ∆Eαβ = 0.
What is the 2S lifetime in the limit of strong applied electric field?



Statistical Mechanics

From classical electrodynamics we know – among many other things – the following facts about
electromagnetic radiation:

• The radiation pressure p and the energy density u = U/V of isotropic electromagnetic radia-
tion are related by p = 1

3
u. (This is an “equation of state”.)

• For thermal radiation this energy density u = u(T ) only depends on the temperature T .

• The number N of photons in thermal equilibrium cannot be fixed. Formally we can account
for this fact by saying that their chemical potential is µ = 0. (This, of course, goes beyond
classical electrodynamics. Just bear with us.)

Based on these principles, you are now asked to derive an important result for thermal radiation.

1. Recall the identity G = µN for the Gibbs free energy G(T, p,N). Use it to show that the
entropy of isotropic thermal radiation is given by S = 4

3
V u(T )/T .

2. Derive the Maxwell relation
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3. Use the preceding two results to derive the well-known law u = aT 4 (with some undetermined
integration constant a).

We will now look a bit into the quantum nature of the problem and derive the constant a from first
principles.

4. The spectral (frequency-resolved) energy density ũ(ω) of thermal radiation is given by
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V
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δ
(

ω − ǫ~k
~

)

ǫ~k 〈N̂~k〉 . (0)

Here, ǫ~k is the energy of a photon with wave vector ~k, and 〈N̂~k〉 is the expected number of
such photons at some prescribed temperature T ; the overall prefactor 2 accounts for the two
directions of polarization per photon.

(a) Approximate the sum over ~k with a suitable integral, assuming a cubic box of length L.

(b) Write down expressions (that you need not derive) for ǫ~k and 〈N̂~k〉.
Hint: recall one more fact about photons: they are bosons.

(c) Derive an explicit formula for ũ(ω) in the thermodynamic limit V → ∞.

5. By integrating ũ(ω) over all frequencies, thus getting back the total energy density, rediscover
the law u = aT 4 you have previously derived on thermodynamic grounds. Give an explicit
expression for the constant a.
Hint:

∫

∞

0
dx x3/(ex − 1) = π4

15
.



General Physics

(Note: Parts (a),(b),(c) are not related to each other. Compute all numerical results by hand;
orders of magnitude are more important here than the number of significant figures.)

(a) Consider a perfectly reflecting “solar sail” placed in outer space at a distance from the Sun
equal to the Earth’s orbit radius, and facing the Sun.

(i) Compute the radiation pressure on that sail due to the Sun’s electromagnetic radiation.
(The intensity of electromagnetic radiation from the Sun at that distance is 1.4 kW/m2.)

(ii) If the sail has an area of one square kilometer and is made of aluminum foil of thickness
one micron (that’s 10−6m), compute its acceleration (in units of g) due to that radiation
pressure. (The mass density of aluminum is 2.7 × 103 kg/m3.)

(iii) At that same distance from the Sun the cloud of particles known as “solar wind” which is
continually ejected from the Sun, has an average density of 7 protons per cubic centimeter
and moves at an average speed of 400 km/s. Compute the pressure on the sail due to that
solar wind, assuming the protons get stuck in the sail (the proton mass is 1.7× 10−27kg).
Compare the result to that of part (i) above.

(b) The famous supernova SN1987A occurred at a distance of about 5 × 1012 light-seconds from
Earth. For the first time in history this supernova was also observed via the burst of neutrinos
it emitted. Within that burst, one neutrino of 20 MeV energy and another neutrino of 10 MeV
energy arrived on Earth within ten seconds of each other. Assuming that both were emitted
simultaneously at the same location within the supernova, derive an approximate upper limit
on the neutrino mass, m, in units of eV/c2. (Hint: You may assume mc2 ≪ 1 MeV. Use this
to make simplifying approximations early on in yor calculation.)

(c) An astronomical object (for example, a blob of material ejected from a
quasar) moves with (actual) speed v0 at an angle θ off the line of sight
from the Earth as shown in the figure at right.

(i) In terms of v0 and θ find the apparent “sideways” velocity, vx,app,
of the object as observed from Earth. (You may assume the dis-
tance from the Earth to the object to be very much larger than the
distance traveled by the object during the period of observation.
Do the calculation from the point of view of an observer on Earth.)
Check if your result makes sense in the special cases, θ = 0 and
θ = 900.

(ii) Make a numerical estimate of vx,app if v0 ≈ 0.99 c and θ ≈ 60

(which means sin θ ≈ 0.1), and comment on the result.
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