
Carnegie Mellon Department of Physics Fall 2010

Graduate Written Qualifying Exam

Day 1 – Classical Physics

Monday, Aug. 16, 2010

*** Please read carefully before beginning ***

On day 1 of this exam you are asked to work three problems, each of which has several parts.

Work each problem in a separate blue exam book. Write your name and the problem

number on the front cover of each.

In order to get full credit you must show all your work, either by showing all relevant steps of a
calculation or, where applicable, by giving a clear and logically consistent explanation. Correct
answers with no supporting calculation or explanation will receive little or no credit. In case of an
incorrect final answer, partial credit will be given if a correct approach to the problem is evident.

Note that you are expected to work all the problems covered in the exam.

Many of the problems only need a few lines of calculation. If you find yourself in a

lengthy calculation, stop and move on. If something appears unclear, don’t hesitate to

ask.

Good Luck!



Expressions, formula, physical constants, integrals, etc

(which you may find useful although you may not need all of them)
Coordinates: Cartesian (xyz), Cylindrical (sφz), Spherical (rθφ)
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ŝ+

1

s

∂f

∂φ
φ̂+

∂f

∂z
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ŝ+

[

∂vs

∂z
− ∂vz

∂s

]

φ̂+
1

s

[

∂

∂s
(svφ) −

∂vs

∂φ

]

ẑ
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ǫ0 = 8.854 × 10−12 C2/N m2 µ0 = 4π × 10−7 N s2/C2

c = 1/
√
ǫ0µ0 = 3.0 × 108 m/s e = 1.602 × 10−19 C

h = 6.626 × 10−34 J s h̄ = h/2π = 6.582 × 10−22 MeV s

h̄c = 197 MeV fm = 197 eV nm (h̄c)2 = 0.389 GeV2 mbarn

me = 0.511 MeV/c2 ≈ 10−30 kg mproton = 938 MeV/c2

1 eV = 1.602 × 10−19 J 1 eV/c2 = 1.783 × 10−36 kg

kB = 1.381 × 10−23 J/K kB = 8.617 × 10−5 eV/K



Classical Mechanics

A thin, uniform bar of mass M and length 3L/2 is suspended by a string of length L and negligible
mass, as shown below. [Note: the moment of inertia of a thin uniform bar of length l and mass m
about the center of mass, perpendicular to its length is (1/12)ml2.]

(a) In terms of the variables θ and φ shown in the figure, what is the position and velocity of the
center of mass of the bar in the xy-plane? Adopt a coordinate system centered on the top end
of the string and let (x1, y1) be the coordinates of the connection between string and bar. Write
the Lagrangian for arbitrary angles θ and φ, and show that the Lagrangian appropriate for small
oscillations is
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(b) In the limit of small oscillations, find the Euler-Lagrange equations and show that the equations
of motion for the angles θ and φ are:

Lθ̈ + Lφ̈+ gθ = 0

and

Lφ̈+
3

4
Lθ̈ + gφ = 0

(c) Again in the limit of small oscillations, write down the form of the normal modes of the system
and solve for the frequencies of the normal modes. Describe, both quantitatively and qualitatively,
the motion of each normal mode.

(d) Now consider the situation where the system is at rest with θ = φ = 0. At time t=0 an impulse
F∆t is applied to the center of the bar in the horizontal direction. Does the impulse excite a single
normal mode (which one?) or does it excite a superposition of modes? Briefly explain.



Electricity and Magnetism

(“Plasma Physics 101”)

A plane electromagnetic (e.m.) wave in vacuum, Ẽ(z, t) = ŷ E0 e
i(kz−ωt) , encounters a lonely

free particle of mass m and charge q , initially at rest at the origin. You may assume E0 to be
real.

(a) Neglecting the magnetic force, write down the equation of motion of the particle. Given the
velocity of the particle as ṽ(t) = ṽ0 e

−iωt , solve for the amplitude ṽ0 .

(b) Suppose the e.m. wave encounters a dilute plasma of N such free charged particles per unit
volume. Show that the conductivity of the plasma is given by σ = i N q2/(m ω) .

(c) Recall that an e.m. wave in any conducting medium must satisfy the “dispersion relation”,
k̃2 = µ ǫ ω2 + i σ µ ω (No need to derive this here.) (i) Use this to find an expression for the
minimum frequency (a.k.a. “plasma frequency”) ωp for which the wave number k̃ is real. (ii) Make
a numerical estimate of ωp if N ≈ 5 × 1011/m3 which is typical for the (nearly) free electrons in
the Earth’s ionosphere. What is the implication of the result for the radio communication between
NASA and its satellites in outer space?

(d) In the equation of motion in part (a) we neglected the magnetic force on the particle. Is that
assumption equally good (or bad) at all frequencies? (Hint: compute the ratio of the magnitude of
the magnetic force to that of the electric force, and simplify.)

(e) WOULD A PLASMA SKY BE BLUE? In other words: suppose the Earth’s entire atmosphere
was a dilute plasma, what color would we see if we looked straight up at the sky on a sunny
afternoon? Do a calculation to find out, and state your reasoning.



Mathematical Physics

A cylinder of radius a and height h is a model for a “quantum pillar”, in which a single electron is
confined in the interior. The dimensionless time-independent Schrödinger equation is

−∇2ψ = Eψ

with the Laplace operator in cylindrical coordinates given by
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We impose the boundary condition ψ = 0 on the surface of the cylinder.

(a) Assuming a solution in the separation of variables form (i.e. a product of three functions),
derive differential equations governing each of the three functions. Be sure to fully define every
symbol you introduce, and state the boundary conditions applied to each differential equation.

(b) Solve the differential equations related to the angle θ and vertical position z, obtaining the
most general solutions consistent with the boundary conditions and any other conditions that the
solutions must obey.

(c) The radial equation has two linearly independent solutions. Obtain the limiting forms of both
solutions for small r. Only one of these two solutions is applicable to the quantum pillar – state
which one, and briefly explain why.

(d) What is the form of the radial equation at large r? Show that in the large r limit the two
linearly independent solutions both oscillate. Determine the wavenumber of the oscillation.

(e) What is the most general solution to the radial equation for the quantum pillar that obeys the
physical constraints at small r and also the boundary condition at r = a?

(f) Assuming E is an allowed energy eigenvalue of the Schrödinger equation, write down the most
general wavefunction ψ(r, θ, z) of the quantum pillar.


