
Carnegie Mellon Department of Physics Spring 2009

Graduate Written Qualifying Exam

Day 2 – Modern Physics

February 10, 2009

*** Please read carefully before beginning ***

On day 2 of this exam you are asked to work three problems, each of which has several parts.

Work each problem in a separate blue exam book. Write your name and the

problem number on the front cover of each.

In order to get full credit you must show all your work, either by showing all relevant steps
of a calculation or, where applicable, by giving a clear and logically consistent explanation.
Correct answers with no supporting calculation or explanation will receive little or no credit.
In case of an incorrect final answer, partial credit will be given if a correct approach to the
problem is evident.

Note that you are expected to work all the problems covered in the exam.

Most of the problems only need a few lines of calculation. If you find yourself

in a lengthy calculation, stop and move on. If something appears unclear, don’t

hesitate to ask.

Good Luck!
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Expressions, formula, physical constants, integrals, etc

(which you may find useful although you may not need all of them)
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ǫ0 = 8.854 × 10−12 C2/Nm2 µ0 = 4 π × 10−7 Ns2/C2

c = 1/
√
ǫ0µ0 = 3.0 × 108 m/s e = 1.602 × 10−19 C

h = 6.626 × 10−34 J s h̄ = h/2π = 6.582 × 10−22 MeVs

h̄c = 197 MeV fm = 197 eV nm (h̄c)2 = 0.389 GeV2 mbarn

me = 0.511 MeV/c2 mproton = 938 MeV/c2

mµ = 105.7 MeV/c2 mπ0 = 135 MeV/c2

1 eV = 1.602 × 10−19 J 1 eV/c2 = 1.783 × 10−36 kg

kB = 1.381 × 10−23 J/K NA = 6.022 × 1023 mol−1

1 Mpc = 3.086 × 1022 m GN = 6.674 × 10−11 m3 kg−1 s−2
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IV. Quantum Mechanics

(a) Consider the Schrödinger equation of a charged particle in the xy-plane

1

2m
(−ih̄ ~∇− e

c
~A )2 ψ(x, y) = E ψ(x, y).

Suppose the particle moves in a constant magnetic field ~B = B0ẑ. We may choose a gauge
where

~A = xB0 ŷ.

Prove that the particle’s momentum in the y-direction is conserved.

(b) Assuming that the momentum of the particle in the y-direction is given by h̄ky and
ψ(x, y) = φ(x)eikyy, show that the Schrödinger equation reduces to

− h̄2

2m

d2

dx2
φ+

1

2
mω2(x− xc)

2 φ = Ex φ

and give the values of ω, xc and Ex. We will refer to xc as a “center”. What familiar equation
have you derived?

(c) Suppose that the system is a plane of dimensions Lx ×Ly with periodic boundary condi-
tions in the y-direction: ψ(x, y) = ψ(x, y+Ly). Determine the allowed values of ky consistent
with this boundary condition.

(d) Briefly describe the probability density P (x, y) for a particle in the lowest energy level.

(e) Estimate the degeneracy of the lowest energy level by evaluating the spacing ∆xc between
adjacent centers.

(f) Suppose we wish to add spin to the Hamiltonian given in part (a). This can be accom-
plished by writing:

1

2m
[ (ih̄ ~∇− e

c
~A) · σ ]2 ψ(x, t) = E ψ(x, t).

Assuming this is the correct procedure to add spin, calculate the gyromagnetic ratio g for the
electron. Recall, g is defined via µ = ge

2mc
~S and the coupling to the magnetic field is given by

H = −~µ · ~B. Hint: Write σiσj in terms of the sum of a commutator and anti-commutator.
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V. Statistical Mechanics and Thermodynamics

A magnetic dipole ~µ is placed into a homogeneous mag-
netic field ~B. The energy (Hamiltonian) of the dipole

is H = −~µ · ~B. The usual spherical polar angles ϑ and
ϕ, that measure the dipole orientation relative to the
field direction, are suitable degrees of freedom. We will
neglect their conjugate momenta in all that follows.

B

µ
ϑ

ϕ

(a) Write down the classical partition function Z of this system.

Hint: Express ~µ · ~B in spherical polar coordinates.

(b) Evaluate the integrals obtained above and show that (up to an irrelevant constant pre-
factor) Z = 1

y
sinh(y), where we introduced the convenient dimensionless variable y := µB

kT
.

(c) Let the canonically averaged alignment of the dipole with the field be 〈cos(ϑ)〉. Write
this expression explicitly as Boltzmann-weighted integrals over the degrees of freedom.

(d) Take your answer from part (c) and show that

〈cos(ϑ)〉 =
1

Z

∂Z

∂y
=
∂ ln(Z)

∂y
.

(e) Show that the magnetization M = µ 〈cos(ϑ)〉 is given by M = −∂F
∂B

, where F (T,B) =
−kT ln(Z) is the free energy.

(f) Perform the derivative in part (d) and show that M = µL(y), where we defined the
so-called “Langevin function” L(x) := coth(x) − 1

x
.

(g) Work out M(B) in the limit of small B. Suggestion: Expand L(y) for small y by
Taylor-expanding all exponential functions entering the coth(y) part up to third order in y.

(h) What is the isothermal magnetic susceptibility χT =
(

∂M
∂B

)

T
at small B-field?

(i) What is the behavior of M(B) for B → ∞?

(k) Sketch the function M(B) and try to include all results that you know by now. It will
be convenient to use y = µB/kT as the horizontal axis (or, equivalently, to measure B in
units of kT/µ).

4



VI. General Physics

The Mössbauer effect refers to the resonant and recoil-free emission and absorption of gamma
rays from nuclei. Consider the case of Fe57, which has a nuclear ground state with spin and
parity JP = 1/2− and an excited state with JP = 3/2− at 14.4 keV above the ground state.
(Do all numerical calculations in this problem by hand to ∼ 20% accuracy.)

(a) The excited state is known to have a half-life of 98 nano-seconds. What is the natural
line width of the state expressed in eV?

(b) By how much is the energy of the emitted photon shifted due to the recoil of the nucleus?
Again, give your answer in eV.

(c) How much broadening of the gamma-ray transition from the excited state to the ground
state is expected if the emitting nucleus is in classical thermal equilibrium at room temper-
ature? Compare your result to the natural line width from part (a).

(d) The Mössbauer effect arises because a “recoilless” fraction of the gamma rays emitted
exhibit the natural line width instead of the recoil-shifted and thermally-broadened width.
Explain in words the physics principles that make this effect possible to observe.

(e) The Zeeman effect, describing the splitting of spectral lines by an atom placed in a static
magnetic field, plays an important role in Mössbauer spectroscopy. Soft iron has a strong
magnetic field at the nucleus due to the magnetism of the electrons in the lattice. This
field splits the energy levels of the JP = 1/2− ground state and the first excited state with
JP = 3/2−.

(i) Draw a schematic energy level diagram showing how the given states are split, labeling
the states according to their magnetic quantum numbers mz. There is no calculation needed
for this part. You may ignore quadrupole effects.

(ii) On your diagram show all possible photon absorption transitions from the ground
state to the first excited state for the lowest allowed multipole transitions. What type of
transition characterizes the main effect?

(f) The energy level splittings depend on the strength of the magnetic moments, µ, of the
states. Magnetic moments are measured in units of “magnetons”. Use the example of a
point particle of mass m and charge e in a circular orbit, to show that a natural definition
for a magneton is given by

µ =
eh̄

2m
.
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