
Carnegie Mellon Department of Physics Fall 2009

Graduate Written Qualifying Exam

Day 2 – Modern Physics

August 19, 2009

*** Please read carefully before beginning ***

On day 2 of this exam you are asked to work three problems, each of which has several parts.

Work each problem in a separate blue exam book. Write your name and the

problem number on the front cover of each.

In order to get full credit you must show all your work, either by showing all relevant steps
of a calculation or, where applicable, by giving a clear and logically consistent explanation.
Correct answers with no supporting calculation or explanation will receive little or no credit.
In case of an incorrect final answer, partial credit will be given if a correct approach to the
problem is evident.

Note that you are expected to work all the problems covered in the exam.

Many of the problems only need a few lines of calculation. If you find yourself

in a lengthy calculation, stop and move on. If something appears unclear, don’t

hesitate to ask.

Good Luck!
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Expressions, formula, physical constants, integrals, etc

(which you may find useful although you may not need all of them)
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√
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4π
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√
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∫

∞

0
dx e−ax2

=
1

2

√

π

a

∫

∞

0
dx xe−ax2

=
1

2a

∫

∞

0
dx x2e−ax2

=
1

4

√

π

a3

∫

∞

0
dx x e−ax =

1

a2

∫

∞

0
dx x2 e−ax =

2

a3

∫

∞

0
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ǫ0 = 8.854 × 10−12 C2/Nm2 µ0 = 4 π × 10−7 Ns2/C2

c = 1/
√

ǫ0µ0 = 3.0 × 108 m/s e = 1.602 × 10−19 C

Z0 =
√

µ0/ǫ0 ∼ 376.7 Ω NA = 6.022 × 1023 mol−1

h = 6.626 × 10−34 J s h̄ = h/2π = 6.582 × 10−22 MeVs

h̄c = 197 MeV fm = 197 eV nm (h̄c)2 = 0.389 GeV2 mbarn

me = 0.511 MeV/c2 mproton = 938 MeV/c2

mµ = 105.7 MeV/c2 mπ0 = 135 MeV/c2

1 eV = 1.602 × 10−19 J 1 eV/c2 = 1.783 × 10−36 kg

kB = 1.381 × 10−23 J/K kB = 8.617 × 10−5 eV/K

1 Mpc = 3.086 × 1022 m GN = 6.674 × 10−11 m3 kg−1 s−2
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IV. Quantum Mechanics

This problem concerns the Stark Effect in hydrogen, in which atomic energy levels shift in
response to an applied electric field E . In a weak electric field, the ground state (n = 1)
energy E varies as

∆E = −α

2
E2

with higher order corrections in the field strength. Note the absence of a first order energy
shift proportional to E .

(a) Give a symmetry-based explanation (in words, no calculation required) why there is no
first order energy shift.

(b) In view of the vanishing first order shift discussed above, briefly explain (in words, no
calculation required):

(i) Why does the energy shift to first order in a magnetic field B in the Zeeman effect?

(ii) Why does the energy shift to first order in an electric field E in the Stark effect for
excited states (n > 1)?

(c) Write a formal expression for the second order energy shift ∆E of the ground state due to
the Stark Effect. Express your answer in terms of matrix elements of the electric potential V
and zero field energy levels En. Is ∆E positive or negative? Explain why!

(d) For the hydrogen atom the ground state wave function is

|100〉 =
1√
πa3

e−r/a

with energy E1 = −e2/2a. Let the electric field point in the z-direction so that V = −eEz.
A strict lower bound (and close estimate) for α can be obtained from your result in part (c)
by the following trick: replace all excited state energies En with 0, then using the fact that

∑

nlm

|nlm〉〈nlm| = 1,

together with the value of the matrix element 〈100|z2|100〉, which you should calculate,
discover that you can evaluate ∆E and thus estimate α.
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V. Statistical Mechanics and Thermodynamics

(a) Consider a three-dimensional hard-walled box of
side-lengths Lx, Ly, and Lz. It encloses a single spher-
ical particle with radius b and mass m. What is the
total volume V0 available to the center of mass of that
particle? If the system is at temperature T , deter-
mine the canonical partition function Z0(1) and the
Helmholtz free energy F0(1) of that particle. Express
your answer in terms of the thermal de Broglie wave-
length λdB = h/

√
2πmkBT . Ignore gravity.

2b

(b) We now add two bigger spherical particles of radius
a ≫ b at fixed positions sufficiently far away from the
walls and each other. None of the three particles can
overlap and there is no interaction between them. What
is now the total volume V2 available to the small parti-
cle? What is its partition function Z2(1) and Helmholtz
free energy F2(1)?

2b

2a

b

(c) Let the two bigger particles approach each other to
a center-to-center distance r smaller than 2(a + b) but
bigger than 2a. Explain qualitatively how the available
volume for the small particle changes from V2 to V2′, for
instance by referring to the shaded lens-shaped region
of volume Vlens in the figure to the right. Re-express the
partition function Z2′(1) and the Helmholtz free energy
F2′(1) of the small particle?
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2b

2a

r

(d) We next put N ≫ 1 small particles into the box
from part (c). Assume that their density is small
enough such that we can treat them as an ideal gas,
i.e., we can neglect their interactions with each other.
Under this simplified assumption, and given that we
know the partition function Z2′(1), what are the par-
tition function Z2′(N) and the Helmholtz free energy
F2′(N) of the system of N small particles in the pres-
ence of the two bigger (fixed) spheres?
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(e) F2′(N) depends on the volume Vlens of the lens-shaped region. Since we can safely assume
Vlens ≪ V2, expand F2′(N) up to first order in Vlens/V2.

(f) Your answer to part (e) shows that when the two big spheres come sufficiently close
together, the free energy of the system of small spheres decreases by some amount. Using the
fact that the small spheres were treated in ideal gas approximation, simplify this reduction
term and discuss it in terms of work.
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(g) Since Vlens depends on the distance r between the two big particles, the reduction term
can be viewed as a small-sphere-induced attractive interaction potential U(r) between the
bigger spheres. Such an effect is common in colloidal science and referred to as “depletion
attraction”. With this in mind, calculate and sketch U(r) for all values of r. [Hint: You
may use the fact that a spherical cap of height h cut off a sphere of radius R has a volume
Vcap = πh2(R − 1

3
h).]

(h) Explain how the same effect that leads to attractions between big spheres can also lead
to an attraction of a single big sphere to one of the container walls.
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VI. General Physics

(a) Consider a classical point charge q moving in a uniform static magnetic field ~B pointing
in the z-direction. Discuss the motion of this point charge using relevant equations. What
are the classical constants of motion?

(b) Consider a sphere with uniform volume charge and mass densities spinning at angular
frequency ω about an axis ẑ. The sphere has radius R, total charge Q and mass M . Using
SI units, work out the classical magnetic moment of the spinning sphere in terms of its
angular momentum. [Hint: classically the magnetic moment ~m of a current loop of area A
and current I is ~m = ẑIA.]

(c) For a quantum mechanical but spinless electron in a uniform magnetic field in z-direction,
the energy levels are En = h̄ωc(n + 1/2) with a classical cyclotron frequency ωc = eB/m.
This result neglects the free-particle component of the electron’s motion along ẑ.

(i) Draw and label with quantum number n a diagram showing the first four energy levels
for the quantum mechanical but spinless electron in a constant magnetic field.

(ii) Determine a numerical value for the level separation ∆E in a 1 T magnetic field.

(d) If the electron is in equilibrium at temperature T = 0.03 K, what is the probability that
any level other than the ground state will be occupied for the spinless electron in the 1 T
magnetic field? If the temperature is 300 K, estimate the average value of n for the electron.

(e) The detailed quantum physics of the magnetic moment of the electron is contained in a
g-factor ge that multiplies the classical gyromagnetic ratio. With spin, there is an additional
magnetic interaction that will shift the energy levels.

(i) Express the energy of the electron in terms of n and the spin projection quantum

number ms, taking the quantization axis as the ~B direction.

(ii) Show the relation of the new states to the zero-spin states from (c), assuming that
ge is exactly 2. Draw and label with (n, ms) a new energy level diagram to the right
of your diagram from part (c).

(iii) Focusing on the n = 0 and n = 1 energy levels, draw another energy level diagram
for the case if ge is slightly larger than 2.0.

(f) The g-factor for the electron has been measured with a precision better than one part in
1012. This is an incredible success of experimental science. Assuming that you do not know
how this experiment was carried out, we would like you to invent an apparatus to measure
the g-factor of the electron, based on your previous analysis. Comment qualitatively on what
the experimental apparatus must include. What signal will you measure that depends on g?
What properties of your method will limit its accuracy?
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