
Carnegie Mellon Department of Physics Fall 2008

Graduate Written Qualifying Exam

Day 2 – Modern Physics

August 20, 2008

*** Please read carefully before beginning ***

On day 2 of this exam you are asked to work three problems, each of which has several parts.

Work each problem in a separate blue exam book. Write your name and the

problem number on the front cover of each.

In order to get full credit you must show all your work, either by showing all relevant steps
of a calculation or, where applicable, by giving a clear and logically consistent explanation.
Correct answers with no supporting calculation or explanation will receive little or no credit.
In case of an incorrect final answer, partial credit will be given if a correct approach to the
problem is evident.

Note that you are expected to work all the problems covered in the exam.

Most of the problems only need a few lines of calculation. If you find yourself

in a lengthy calculation, stop and move on. If something appears unclear, don’t

hesitate to ask.

Good Luck!
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Expressions, formula, physical constants, integrals, etc

(which you may find useful although you may not need all of them)
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ǫ0 = 8.854 × 10−12 C2/Nm2 µ0 = 4 π × 10−7 Ns2/C2

c = 1/
√

ǫ0µ0 = 3.0 × 108 m/s e = 1.602 × 10−19 C

h = 6.626 × 10−34 J s h̄ = h/2π = 6.582 × 10−22 MeVs

h̄c = 197 MeV fm = 197 eV nm (h̄c)2 = 0.389 GeV2 mbarn

me = 0.511 MeV/c2 mproton = 938 MeV/c2

mµ = 105.7 MeV/c2 mπ0 = 135 MeV/c2

1 eV = 1.602 × 10−19 J 1 eV/c2 = 1.783 × 10−36 kg

kB = 1.381 × 10−23 J/K NA = 6.022 × 1023 mol−1

1 Mpc = 3.086 × 1022 m GN = 6.674 × 10−11 m3 kg−1 s−2
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IV. Quantum Mechanics

The alkali atoms H, Li, Na, K, Rb, Cs and Fr can be labeled by an integer n = 1, 2, 3, 4, 5, 6
and 7, respectively. The electronic structure of the nth alkali atom can be approximated by
a single valence electron in the nS state of a Coulomb field generated by the closed shells of
the inner electrons and the nucleus.

(a) Estimate the first ionization energy of Rb.

(b) An alkali atom in its ground state has two contributions to its spin: The electronic spin
~S with quantum number s = 1/2 and its nuclear spin ~I with quantum number i. Note that
the nuclear spin does not need to be spin 1/2. How many total spin states are possible?

(c) Defining the total spin ~F = ~S +~I, write down two sets of complete sets of commuting
observables associated with spin. One set should include F 2, the other one should not.

(d) The Hamiltonian for a single atom includes a hyperfine term that can be written as

H =
2Ehf

(2i + 1)h̄2
~I · ~S

This interaction splits the energy levels into two multiplets. Assuming that i = 3/2 write
down the quantum numbers of these multiplets along with their corresponding eigenvalues
of the hyperfine Hamiltonian.

(e) Suppose the nuclear spin is i = 1/2. Write down the spin wave function for the energy
eigenstates in the Sz, Iz basis. Use the notation |iz; sz〉, so that, for instance, a state with
the electron and nuclear spin being 1/2 is written as |1/2; 1/2〉. Write down the energy
eigenvalues for each state.

(f) Suppose we now place the atom in an external magnetic field ~B. The magnetic moment
µ of the atom is dominated by the term proportional to the electron spin. The magnetic
term in the Hamiltonian is

Hmag = −2
µ

h̄
~S · ~B

Assuming that µB ≪ Ehf , calculate the approximate shift in the energy levels. Are there
any degenerate states left? If so, label them. Note that you may ignore the effects of the
nuclear spin since the nuclear magnetic moment is suppressed.

(g) Why is the nuclear magnetic moment suppressed?

(h) Prove that the full Hamiltonian, when acting on a state, preserves the total angular
momentum in the z-direction. Using this fact find two states with fixed iz and sz (i.e. of the
form | iz, sz〉) which are eigenstates of the full Hamiltonian. These states play a special role
in atomic traps.
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V. Statistical Mechanics and Thermodynamics

Consider a two-dimensional gas of N rodlike
particles in the xy-plane, all having mass m,
length ℓ, and thickness zero (“line-particles”).
We simplify the rotational degree of freedom
by assuming that the rods can only assume M
different orientations. This also eliminates the
need to consider rotational energy. x

y

(a) In a first step we neglect any particle interactions. You can think of this system as a
mixture of M ideal gases, each one consisting of Ni particles in orientation i. We define the
total particle number N =

∑M
i=1

Ni, the fractions ni = Ni/N of particles in orientation i, the
overall density ρ = N/A, where A is the area of the region in which all particles move, and
the thermal de Broglie wavelength λ = h/

√
2πmkBT .

Give a detailed derivation showing that the free energy per particle, fideal, in the limit that
all Ni ≫ 1, is given by

βfideal ≡ Fideal({Ni}, A, T )

NkBT
=

[

ln (ρλ2) − 1
]

+
M
∑

i=1

ni ln ni.

(b) The expression in square brackets is the free energy of an ideal gas of N structureless

particles. What is the physical meaning of the additional term
∑

i ni ln ni?

(c) From now on we simplify the situation fur-
ther by assuming that there are only M =
2 different orientations: one along the x-
direction, and one along the y-direction. Let
nx and ny be the fractions of rods point-
ing along the x- and y-direction, respectively.
Show that the ideal free energy is minimized
at nx = 1

2
, i.e., for an isotropic distribution of

rods.

x

y

(d) If the density increases, interactions between the rods become important. Specifically,
the particles cannot overlap. Within a second order virial expansion this adds the following
“collision term” to the free energy:

βfcollision =
Fcollision

NkBT
=

1

2
ρ

∑

i,j∈{x,y}

ninj Aij , (1)

where Aij is the excluded area between two rods of orientation i and j, i.e., the area of the
region which the center of mass of one of the rods cannot occupy due to the presence of the
other. Determine all four Aij . A sketch might help.

(e) Show that βfcollision = ρ ℓ2 (1

4
− ε2), where we introduced ε = nx − 1

2
as an “order

parameter” that measures the deviation of the system from the isotropic state.
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(f) Since fideal is minimized at nx = 1

2
, we expand it for small ε around this point. By

considering ftotal = fideal + fcollision and using the approximation

βfideal = const. + 2ε2 +
4

3
ε4 + O(ε6),

show that there is a critical density ρc such that for ρ ≤ ρc the system is isotropic, while for
ρ > ρc the system prefers a “nematic phase”, in which the value of the order parameter ε
that minimizes ftotal is either bigger or smaller than the isotropic value ε = 0. What happens
physically to the system when it enters the “nematic phase”?
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VI. General Physics

A recent demonstration of wave-particle duality of a large molecule has been demonstrated
with C60 molecules (O. Nairz, M. Arndt, and A. Zeilinger, Amer. J. Phys. 71 (2003) 319).
In this experiment interference was observed in a matter version of Young’s famous double
slit experiment.

(a) Sketch a diagram of Young’s classic double slit experiment, which was originally per-
formed with light, and label each element. Derive the condition to observe constructive
interference in the experiment.

(b) Some issues encountered in a single particle interferometry experiment of a large molecule
like C60, that are not encountered in the same experiment with light, are a velocity distribu-
tion in the beam of molecules and the small spacing of the interference orders that requires
ionization of the molecules for detection of the interference patterns.

(i) With these specific issues in mind, draw a block diagram of an apparatus that you
might use to observe double slit diffraction with C60 molecules. Label each element and
briefly describe its function.

(ii) Comment on at least one other way in which this experiment is different (in a mea-

surable way) from an optical interference experiment.

(c) What is the angular separation between interference maxima in the observation plane for
a beam of molecules with a velocity of 200 m/s and a slit separation of 100 nm given that
mC60

= 1.2 × 10−24 kg?

(d) In order to observe the interference pattern, the experimentalists had to worry about the
width of both the longitudinal velocity distribution as well as the transverse distribution.
Discuss how each of these distributions affects the measurement and how you could limit
them. Be quantitative in your discussion.
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