
Graduate Qualifying Exam 2005

DAY ONE – Classical Physics

August 22, 2005

Please read carefully before starting –

On this first day of this exam you are asked to work three problems, each of which has several
parts.

Work each problem in a separate blue exam book. Write your name and the

problem number on the front cover of each.

In order to get full credit you must show all your work, either by showing all relevant steps
of a calculation or, where applicable, by giving a clear and logically consistent explanation.
Correct answers with no supporting calculation or explanation will receive little or no credit.
In case of an incorrect final answer, partial credit will be given if a correct approach to the
problem is evident.

Note that you are expected to work all the problems covered in the exam.

Physical constants (which you may find useful although you may not need all of them)

ε0 = 8.854 × 10−12 C2/N m2 µ0 = 4 π × 10−7 N s2/C2

c = 1/
√

ε0µ0 = 3.0 × 108 m/s e = 1.602 × 10−19 C

h = 6.626 × 10−34 J s h̄ = h/2π = 6.582 × 10−22 MeV s

h̄c = 200 MeV fm (h̄c)2 = 0.389 GeV2 mbarn

me = 0.511 MeV/c2 mp = 938.3 MeV/c2

mµ = 105.7 MeV/c2 mπ0 = 135 MeV/c2

1 eV = 1.602 × 10−19 J 1 eV/c2 = 1.783 × 10−36 kg

kB = 1.381 × 10−23 J/K NA = 6.022 × 1023 mol−1

1 Mpc = 3.086 × 1022 m GN = 6.674 × 10−11 m3 kg−1 s−2



I. Mechanics

A spherical ball of radius a and mass m which is not uniformly distributed throughout its
volume rolls without slipping down the circular surface of radius of curvature 4a of a wedge
of mass 5m which is free to slide frictionlessly across a smooth horizontal surface, as shown.
The density ρ(r) of the ball varies only with the distance r from its center according to

ρ(r)
ρ(0) = 1 − 4r
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(a) Show that the moment of inertia of the ball about an axis coming out of the page through
the center of the ball is I = 1

3
ma2.

(b) Let x denote the rightward horizontal displacement of the left vertical edge of the wedge
from the origin O, and let θ denote the angle which a line connecting the center of curvature
of the surface to the center of the ball makes with the horizontal. Determine the Lagrangian
L of the system in terms of x, θ, ẋ, and θ̇.

(c) From the equations of motion, find expressions for the accelerations ẍ and θ̈ in terms of
x, θ, ẋ, and θ̇.

(d) If both the ball and the wedge start initially at rest with the ball positioned such that
θ = 0, eventually the wedge ends up moving with uniform speed vf to the left. Determine an
expression for vf , simplified as much as possible.



II. Electromagnetic Radiation and Waves

(a) A 104 kg spacecraft is launched from Earth and is to be radially accelerated away from
the Sun using a circular solar sail. The initial acceleration of the sail is to be 1g. Assuming a
flat sail, determine the radius of the sail if it is
(i) black, so it absorbs the sun’s light (solar constant= 1.3 kW/m2 )
(ii) shiny, so it reflects the sun’s light.

(b) A small part of the solar sail collects radiation emanating from an extremely large number
of atoms in the solar photosphere, and these sources are incoherent. At any given instant,
there is a near-infinite number of phasors in the complex plane, all of different magnitudes
and different phases, rotating at different velocities. Their vector sum is zero, so perhaps the
net field on the sail should be zero. How do you explain this paradox?

(c) Given the electromagnetic wave

~E = îEocos(kz − ωt) + ĵEosin(kz − ωt) ,

where Eo is a constant. Find the corresponding magnetic field ~B and the Poynting vector.

(d) Show that in free space with ρ = 0, J = 0 , Maxwell’s equations are correctly obtained

from a single vector function ~A satisfying

∇ · ~A = 0 and ∇2 ~A − 1

c2

d2 ~A

dt2
= 0 .

(e) As shown by Arthur Eddington, there is a simple limit to the luminosity of a star or the X-
ray emitting plasma around a neutron star or black hole. The limit derives from the case where
the radiation pressure on an electron in the plasma is greater than the gravitational pull of the
central astrophysical object. Assuming that the plasma is uniformly spherically distributed
around the central object of mass M, derive an expression for this limiting luminosity, the
Eddington limit, in terms of subatomic parameters. (Note: the luminosity os defined as the
energy per unit time radiated off by an astrophysical object. Also, you may find it useful to
know the classical electron radius,

re ≡
(

e2

mec2

)

= 2.8 × 10−13 cm2

and/or the Thomson scattering cross section, σT =
8π

3
r2
e = 6.65 × 10−25 cm2.)



III. Mathematical Methods

Suppose we are interested in studying the motion of an an-harmonic oscillator whose La-
grangian is given by

L =
1

2
mẋ2 − 1

2
kx2 + g(t)x3. (1)

We will assume that g(t) is small and acts over time δt which is much shorter than the time

scale 1/ω0 =
√

m/k. That is, we will treat the tri-linear term as a perturbation. We wish to
find the motion of the oscillator to linear order in g at a time well after the perturbation is
turned off. To do this we will use the Green’s function method.

(a) Write down the equations of motion.

(b) The Green’s function obeys

G̈(t − t′) + ω2
0G(t − t′) = δ(t − t′) . (2)

Show that the motion of x is given by

x(t) = x0(t) +
3

m

∫

dt′G(t − t′)g(t′)x2(t′) , (3)

where x0(t) is a solution to the simple harmonic oscillator motion (i.e., ignoring the an-
harmonic term).

(c) Write

G(t − t′) =
1

2π

∫

dωeiω(t−t′)G̃(ω) (4)

and solve for G̃(ω).

(d) Now we would like to solve for G(t−t′) but we find that the integral is not well defined due
to the existence of poles on the real axis. To deal with this issue we will add an infinitesimal
contribution to the action such that

L =
1

2
mẋ2 − 1

2
(k + iε)x2 + g(t)x3, (5)

where ε > 0. How does this addition to the Lagrangian change eq. (2) ?

(e) This prescription makes the integral for G(t− t′) well defined. Perform the integration for
the cases (a) t > t′, (b) t < t′.

(f) To leading order in g write down an equation for the motion of the oscillator assuming
that the motion of the oscillator prior to the turning on of the perturbation is given by x0(t).


