
Graduate Qualifying Exam, Spring’07

DAY TWO – Modern Physics

February 16, 2007

Please read carefully before starting –

On this second day of the exam we ask you to work three problems, each of which has several
parts.

Work each problem in a separate blue exam book. Write your name and the

problem number on the front cover of each.

In order to get full credit you must show all your work, either by showing all relevant steps
of a calculation or, where applicable, by giving a clear and logically consistent explanation.
Correct answers with no supporting calculation or explanation will receive little or no credit.
In case of an incorrect final answer, partial credit will be given if a correct approach to the
problem is evident.

Note that you are expected to work all the problems covered in the exam.

Physical constants (which you may find useful although you may not need all of them)

ǫ0 = 8.854 × 10−12 C2/N m2 µ0 = 4 π × 10−7 N s2/C2

c = 1/
√
ǫ0µ0 = 3.0 × 108 m/s e = 1.602 × 10−19 C

h = 6.626 × 10−34 J s h̄ = h/2π = 6.582 × 10−22 MeV s

h̄c = 197 eV nm = 197 MeV fm (h̄c)2 = 0.389 GeV2 mbarn

me = 0.511 MeV/c2 mproton = 938 MeV/c2

mµ = 105.7 MeV/c2 mπ0 = 135 MeV/c2

1 eV = 1.602 × 10−19 J 1 eV/c2 = 1.783 × 10−36 kg

kB = 1.381 × 10−23 J/K NA = 6.022 × 1023 mol−1

1 Mpc = 3.086 × 1022 m GN = 6.674 × 10−11 m3 kg−1 s−2



IV. Quantum Mechanics

To get full credit you must show ALL your work. None of the parts in this problem need more

than a few lines of calculation. If you find yourself in a lengthy calculation then stop and

think.

A rigid rotator has the Hamiltonian H =
~L2

2I + κLz , where I and κ are constants.

(a) Write down a complete set of commuting observables for this system.

(b) What are the energy eigenvalues if the total angular momentum is l = 3 ?

(c) At t = 0 the system is in the state | ψ〉 = 1
√

2
(| L = 1,m = 1〉+ | L = 1,m = −1〉).

Calculate 〈Ly〉(t).

(d) If the system is in a state with l = 1,m = 1, calculate the uncertainty ∆Lx.

(e) Prove the following identity,

−ih̄ d
dt
〈O〉 = 〈[H,O]〉 ,

where O is some Hermitian operator satisfying ∂O

∂t
= 0.

(f) Calculate d
dt
〈Li〉 in terms of expectation values of other operators for i = x and i = y.

(g) Use the results of the previous problem to determine 〈Lx〉 for all times assuming that
d
dt
〈Lx〉 = 0, 〈Lx〉 = l, at t = 0. What kind of motion does this correspond to?

(h) Now consider two independent identical rigid rotators, with identical moments of inertia.
The angular momentum of rotator one is in the state L = 1,m = 1 while the second is in the
state L = 1,m = 1. What is the probability of finding the total angular momentum to be 1 ?



V. Statistical Mechanics and Thermodynamics

A magnetic system consists of N spins located on lattice sites i, whose states can be described
by two quantum numbers representing the total angular momentum, J = 1, and its z compo-
nent, mi takes on the values −1, 0, or 1. In a magnetic field of strength B directed along the
z axis, the spin states have energies

H = µ0B Σimi,

where µ0 > 0 is a magnetic moment.

(a) Use the canonical ensemble to compute the Helmholtz free energy F = U − TS of this
system as a function of temperature T and magnetic field strength.

(b) Compute the internal energy U and the magnetization

M = −
(

∂F

∂B

)

T

of the system and make a well-labeled sketch of each as a function of temperature.

(c) Compute the entropy of the system and give analytical forms for its leading non-vanishing
values at very low and very high temperatures.

(d) Suppose that the energy of the system were to be modified in the following way to include
the effects of a crystal field:

H = Σi(µ0Bmi +Dm2

i )

Assume that you had already derived the free energy, F for this model. Derive a thermody-
namic derivative of the free energy that gives the thermal average

< Σim
2

i > .

(e) Some elementary books use the formula

M = −U/B,

to compute the magnetization from the internal energy. As can be seen from the results in
part (b), this equation is sometimes valid. Demonstrate whether this equation remains valid
for the spin state energy given in part (d).



VI. General Physics

Consider a free proton in an uniform external magnetic field given by ~B = B0ẑ , where
B0 = 2.0 Tesla.

(a) Suppose the proton has initial momentum ~p = 100.0 x̂ MeV/c. Estimate the orbital
radius (in meters) and frequency (in Hz) of the proton in the field. Show whether Special
Relativity is relevant here or not.

(b) Compare the magnitudes of the cyclotron frequency, ωc, of a classical charge e and mass
m with the angular momentum (Larmor) precession frequency, ωp, of a classical magnetic
moment characterized by the same e and m.

(c) Next suppose the proton in Part (a) is initially spin polarized along x̂. Estimate the
orientation of the proton’s spin after one complete orbital revolution in the magnetic field.
The proton is not a classical object: it has a structure factor of g = 5.585.

(d) Suppose there is an Avogadro’s number of protons at rest in the field (i.e. a macroscopic
amount of material), all initially aligned along x̂, and you wish to detect the spin precession
of the protons via magnetic induction in a pick-up coil. Carefully draw and explain a diagram
showing how you could orient this coil with respect to the given coordinates and field in order
to detect a signal.

(e) Now suppose the proton is at rest in the ~B field, but with its spin oriented (polarized)

along ẑ, parallel to ~B. Let there be an additional component to the magnetic field given
by ~B1 = B1 cos(ωt)x̂ where B1 = 1. × 10−4 Tesla and ω is a variable angular frequency.
Discuss the subsequent motion of the proton and its polarization vector in the limit that ω
is the Larmor frequency for the proton in the ~B field. In particular, when is the probability
maximized that the proton can be measured with its spin down (along −ẑ)?


