
Graduate Qualifying Exam, Spring’06

DAY TWO – Modern Physics

February 10, 2006

Please read carefully before starting –

On this second day of the exam we ask you to work three problems, each of which has several
parts.

Work each problem in a separate blue exam book. Write your name and the

problem number on the front cover of each.

In order to get full credit you must show all your work, either by showing all relevant steps
of a calculation or, where applicable, by giving a clear and logically consistent explanation.
Correct answers with no supporting calculation or explanation will receive little or no credit.
In case of an incorrect final answer, partial credit will be given if a correct approach to the
problem is evident.

Note that you are expected to work all the problems covered in the exam.

Physical constants (which you may find useful although you may not need all of them)

ε0 = 8.854 × 10−12 C2/N m2 µ0 = 4 π × 10−7 N s2/C2

c = 1/
√

ε0µ0 = 3.0 × 108 m/s e = 1.602 × 10−19 C

h = 6.626 × 10−34 J s h̄ = h/2π = 6.582 × 10−22 MeV s

h̄c = 200 MeV fm (h̄c)2 = 0.389 GeV2 mbarn

me = 0.511 MeV/c2 mp = 938.3 MeV/c2

mµ = 105.7 MeV/c2 mπ0 = 135 MeV/c2

1 eV = 1.602 × 10−19 J 1 eV/c2 = 1.783 × 10−36 kg

kB = 1.381 × 10−23 J/K NA = 6.022 × 1023 mol−1

1 Mpc = 3.086 × 1022 m GN = 6.674 × 10−11 m3 kg−1 s−2



IV. Quantum Mechanics

A particle of mass m is in a 1-d harmonic oscillator potential

V =
1

2
mω2x2

(a) Show that the Hamiltonian can be written as

H = h̄ω(a†a + 1/2)

where a, a† are the raising and lower operators respectively. Write these operators in terms of
x and p.

(b) Show that

a† | n〉 = α+(n) | n + 1〉
a | n〉 = α−(n) | n − 1〉,

and evaluate α+, α−. You can assume that the eigenvalues of the Hamiltonian are h̄ω(n+1/2)
with eigenvectors | n〉, where n is an integer greater than zero.

(c) Now consider adding to the system another (distinguishable) particle of equal mass whose
potential is given by

V (x2) =
1

2
mω2x2

2.

The particles are coupled via a perturbing force

V12 =
1

4
mΩ2(x1 − x2)

2.

Use perturbation theory to calculate the first order correction to the ground state energy of
the system.

(d) Use first order perturbation theory to calculate the energies of the first two excited states.
What are the corresponding eigenvectors?

(e) At t = 0 the system is prepared such that particle one is in the state | 1〉 and particle
two is in the state | 0〉. What is the probability of finding particle one in the (unperturbed)
state | 1〉 as a function of time?



V. Statistical Mechanics

Consider an ideal classical gas of N atoms confined to a container of volume V and internal
surface area A. Although you may neglect the interactions between atoms, there is an attrac-
tion between the atoms and the walls of the container that cannot be ignored. A simple model
for the atoms adsorbed onto the surface is to treat them as a two-dimensional classical ideal
gas, where the energy of an adsorbed atom is

ε(~p) =
|~p|2
2m

− εo

and ~p is the two-dimensional momentum. Do not concern yourself with the details of the
binding; treat εo as a known parameter.

The entire system is in thermal equilibrium with a heat reservoir at temperature T .

(a) What is the classical partition function of the adsorbed atoms if N ′ of them are bound to
the surface?

(b) What is the chemical potential µs of the adsorbed atoms?

(c) What is the classical partition function of the N−N ′ atoms in the volume of the container?

(d) What is the chemical potential of the N − N ′ atoms in the volume of the container?

(e) When the atoms in the volume and those on the surface are in equilibrium with each other,
what is the average number of atoms adsorbed as a function of the temperature T ?

(f) How many atoms are adsorbed on the walls in the limits of high and low temperatures,
according to your answer to (e)? Does your answer make sense in these two limits?



VI. General Physics

(a) For a gas consisting entirely of neutral hydrogen atoms, at what temperature T is the
number of atoms in the first excited state (i) 1% and (ii) 10% of the number of atoms in
the ground state?

Consider a box of electrically neutral hydrogen gas that is maintained at a constant volume
V . The number of electrons must equal the number of ionized ions (H II ions): neV = NII .
Also, the total number of hydrogen atoms (both neutral and ionized), Nt, is related to the
density of the gas by

Nt = ρV/(Mp + me) ' ρV/mp

where mp is the mass of the proton (the mass of the electron is ignored). Let the density of
the gas be 10−9 g cm−3, typical of the photosphere of an average star.

(b) Make these substitutions into the Saha equation (see below) to derive the quadratic equa-
tion for the fraction of ionized atoms,

(NII/Nt)
2 + (NII/Nt)(mp/ρ)(2πmekT/h2)3/2e−χI/kT − (mp/ρ)(2πmekT/h2)3/2e−χI/kT = 0 .

(c) Solve the above quadratic equation for the fraction of ionized hydrogen, NII/Nt for a range
of temperatures between 5000 K and 25,000 K – sketch a very rough graph of the results.

(d) Use the Saha equation to determine the fraction of hydrogen atoms that are ionized,
NII/Ntotal at the center of the sun, where the temperature is about 17 million K and the
number density of electrons is about ne = 6.2 × 1025 cm−3 (use ZI = 2). Does your result
agree with the fact that practically all of the sun’s hydrogen is ionized at the sun’s center?
What is the reason for any discrepancy?

Note: Saha equation:

Ni+1

Ni

=
2Zi+1

neZi

(
2πmekT

h2
)3/2 exp(

−χi

kT
)

where Zi is the number of possible degenerate states (e.g., 2 for the ground-state hydrogen
atom), and χi is the ionization potential.


