
Graduate Qualifying Exam, Spring’06

DAY ONE – Classical Physics

February 9, 2006

Please read carefully before starting –

On this first day of this exam you are asked to work three problems, each of which has several
parts.

Work each problem in a separate blue exam book. Write your name and the

problem number on the front cover of each.

In order to get full credit you must show all your work, either by showing all relevant steps
of a calculation or, where applicable, by giving a clear and logically consistent explanation.
Correct answers with no supporting calculation or explanation will receive little or no credit.
In case of an incorrect final answer, partial credit will be given if a correct approach to the
problem is evident.

Note that you are expected to work all the problems covered in the exam.

Physical constants (which you may find useful although you may not need all of them)

ε0 = 8.854 × 10−12 C2/N m2 µ0 = 4 π × 10−7 N s2/C2

c = 1/
√

ε0µ0 = 3.0 × 108 m/s e = 1.602 × 10−19 C

h = 6.626 × 10−34 J s h̄ = h/2π = 6.582 × 10−22 MeV s

h̄c = 200 MeV fm (h̄c)2 = 0.389 GeV2 mbarn

me = 0.511 MeV/c2 mp = 938.3 MeV/c2

mµ = 105.7 MeV/c2 mπ0 = 135 MeV/c2

1 eV = 1.602 × 10−19 J 1 eV/c2 = 1.783 × 10−36 kg

kB = 1.381 × 10−23 J/K NA = 6.022 × 1023 mol−1

1 Mpc = 3.086 × 1022 m GN = 6.674 × 10−11 m3 kg−1 s−2



I. Classical Mechanics
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A pendulum of mass m and length b is mounted to a heavy sled of mass βm which is free to
slide with negligible friction down an inclined plane of slope α, as shown. The entire system
acts under the influence of gravity, where g is the downward acceleration due to gravity.

(a) Let φ denote the angle that the pendulum bob makes with the vertical, and s denote the
distance the sled has slid down the slope (see diagram). Determine the Lagrangian L(φ, s, φ̇, ṡ)
describing the system in terms of φ and s and their rates of change φ̇ and ṡ with respect to time.

(b) Find expressions for the momenta pφ and ps conjugate to φ and s, respectively.

(c) Describe the steps you would follow to find the Hamiltonian H(φ, s, pφ, ps) of the system.
Do not actually calculate H, just describe how you would determine it.

(d) From the equations of motion for the system, find expressions for the generalized acceler-
ations φ̈ and s̈ in terms φ, s, φ̇, ṡ.

(e) The sled can slide down the slope with the pendulum at an unchanging angle φ0 if φ0

satisfies a certain condition. Determine this condition.



II. Electromagnetism

Consider an azimuthally symmetric magnetic field, such as might be produced by a dipole
magnet with circular pole faces, of the form ~B = B(r)ẑ. An electron of charge e orbits in this
field at a fixed radius R and with momentum ~p in the (r, θ) plane.

(a) What is the orbital frequency of the electron, ω0, assuming the magnetic field is time
independent?

(b) Suppose we inductively accelerate the electron by varying the magnetic field slowly in time
in some way. We want the electron’s radius of orbit to remain fixed at R. Derive a condition
that relates B(R) and the average value of the field within the orbit, < B >, that allows this
to happen. (Note that this is the so-called Betatron condition.) Make a rough sketch of B(r)
vs. r that allows this acceleration technique to work.

(c) What is the change in momentum of the electron if the magnetic field scale starts at value
B0 and ends at value B1 ?

In order for the electron orbit to be stable, it must be stable against small displacements in
the radial (r) and axial (z) directions. Let the magnetic field near the ideal orbit at radius R
have components Bz and Br, though we require Br(z = 0) = 0.

(d) Write the equations of motion for the electron in terms of these two components in cylin-
drical variables.

(e) In the vicinity of the orbiting electron at radius R, let the z component of the field be
given by Bz(r) = B0(r/R)−n, where n is the field index with 0 < n < 1. What is the
corresponding radial component of the field as a function of z ?

(f) Using suitable linearization of the equations for small displacements, show that the oscil-
lation frequencies of the electron are ωr = (1 − n)1/2ω0 and ωz = n1/2ω0 for the radial and
the axial oscillations, respectively.



III. Mathematical Physics

This problem has to do with the diffusion of heat in a slab of material. For the purposes of
the problem we will ignore thermal expansion. As such we may define the internal energy
density in terms of the heat capacity per unit mass cp such that the total energy of the sample
is given by

E =
∫

d3rcpρ(~r, t)T (~r, t)

where ρ is the mass density and T is temperature. The “heat current density” is defined via

~j = −kth
~∇T (~r, t).

where kth is the “thermal conductivity”.

(a) Assuming that there are no sources or sinks and that the density is constant, derive the
heat diffusion equation

∂T

∂t
= κ∇2T,

expressing the diffusivity constant (κ) in terms of cp , kth, and ρ. What are the units of κ ?

(b) Consider a slab of material with diffusivity κ that has a uniform mass distribution ρ = ρ0.
The geometry is such that at x = 0 and at x = a the slab is held at fixed temperature T0.
The remaining sides are insulated (no heat flow in or out). The situation is depicted in the
picture shown below.

y

y = b

x

x = a

z

z = c

T = T0

T = T0

At t = 0 the temperature is given by T (~r, 0). What are the appropriate spatial boundary
conditions?



(the Mathematical Physics problem, continued from previous page)

(c) To solve for the temperature as a function of time it is best to write the diffusion equation
in terms of the variable

δT = T − T0

such that when t → ∞ we have δT → 0. Using the ansatz

δT = δT (~r)e−λt

derive an equation of the form

(∇2 + λ/κ)δT (~r) = 0

and write down an expression (in terms of an infinite sum) for all possible values of λ .

(d) Show that in the long time limit only one term of all the possible values in the above sum
is relevant and determine that value.

(e) Write down the time dependent expression for the temperature in terms of the initial
distribution T (~r, 0) in the long time limit (keeping the first deviation from infinite time limit
T = T0). The final expression should have an integral remaining to be done over T (~r, 0).


