Week 2(b)

Bevington & Robinson Essentials: review/learn Chapters 1, 2, 3

Chapter 1: Uncertainties
Chapter 2: Probability Distributions
Chapter 3: Error Propagation
Four Important Probability Distributions

1. Binomial
 - heads / tails on coin flips
 - left / right-handedness in people

2. Poisson
 - “counting” experiments with random uncorrelated “events”
 - radioactive decay statistics

3. Gaussian
 - model for random fluctuations in experimental data

4. Lorentzian
 - resonance response in mechanical and quantum systems
Binomial Distribution

- draw colored balls from an “urn”, say red and blue
- draw a ball, record color, replace ball so red/blue ratio never changes

Let \(p = \) probability of drawing a red ball, e.g. 1/5
Let \(q = \) probability of drawing a blue ball, e.g. 4/5

\[p + q = 1 \text{ : sum of probabilities must be “100%”} \]

Probability of drawing 3 red in a row and then 2 blue in a row (5 total balls)

\[
P(r,r,r,b,b) = \frac{1}{5_1} \times \frac{1}{5_2} \times \frac{1}{5_3} \times \frac{4}{5_4} \times \frac{4}{5_5} = 0.0051 = p^3q^2
\]

If we don’t care about what order we select the 3 red and 2 blue, we can permute the ordering to find all possible combinations of drawings

\[
\frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{(3 \cdot 2 \cdot 1) \times (2 \cdot 1)} = \frac{5!}{3!2!} = 10 = \text{ways of permuting 5 items} \div \text{ways of permuting 3 items} \times \text{ways of permuting 2 items}
\]
\[P(x = 3 \text{ red}; n = \text{ red + blue} = 5, p(\text{red}) = 1/5) = \frac{n!}{x!(n-x)!} p^x q^{n-x} = 10(0.0051) \rightarrow 5\% \]

Generalize to the Binomial Distribution:

\[P_{\text{Binomial}}(x; n, p) = \frac{n!}{x!(n-x)!} p^x q^{n-x} \]

- defined for integer \(x \) values
- \(n \), the number of “trials”, must be small enough to compute the factorial
- \(p \) represents “success”
- \(q \) represents “failure”

Example: throw 10 dice at once. What is the probability that 3 of them show a “6”?

\[P_{\text{Binomial}}(3; 10, \frac{1}{6}) = \frac{10!}{3!7!} \left(\frac{1}{6} \right)^3 \left(\frac{5}{6} \right)^{10-3} = 7 \]

\[= 120(0.0046)(0.2791) \rightarrow 15.5\% \]
What is the average or mean value of x? Call it μ.

E.g. what is the mean number of red balls out of 5 drawn, or the mean number of “6”'s among 10 dice thrown?

First note the “binomial theorem” of algebra:

$$(p + q)^n = \sum_{x=0}^{n} \frac{n!}{x!(n-x)!} p^x q^{n-x}$$

Since $p+q = 1$, the sum over all values of x is unity. This is required for a proper probability distribution.

The mean value of anything is a probability-weighted sum, written as:

$$\mu = \sum_{x=0}^{n} x \cdot P(x; n, p)$$

We need to evaluate this sum, but the result is (Assignment problem 2.5):

$$\mu = np$$ Binomial mean (average)

E.g. $\mu_{\text{red balls}} = 5(1/5) = 1.00$ - these averages are not integers

$\mu_{\text{6's on dice}} = 10(1/6) = 1.67$
What is the variance, or “second moment”, of x? Call it σ^2. This is related to the square of the standard deviation.

$$\sigma^2 = \sum_{x=0}^{n} (x - \mu)^2 \cdot P(x; n, p)$$

Solve using the same method as on the assigned problem to get:

$$\sigma^2 = np(1 - p)$$

Binomial variance

E.g.

$$\sigma_{\text{red balls}} = \sqrt{5 \left(\frac{1}{5}\right) \left(1 - \frac{1}{5}\right)} = 0.89$$ - these describe the “width” of the distributions

$$\sigma_{\text{6's on dice}} = \sqrt{10 \left(\frac{1}{6}\right) \left(1 - \frac{1}{6}\right)} = 1.18$$
Poisson Distribution

Take the limit of the Binomial distribution when the p of “success” is very small, i.e. $\mu \ll n$.

For example: (random) cosmic ray arrival times

The maximum number of cosmic rays arriving in one time bin is huge (\rightarrow infinity) but in fact the average value of x is a small number: μ. Let μ be the average count of cosmic rays per unit time.

What is $P_{\text{Poisson}}(x; \mu)$? Suppose the average rate is 2.5/sec.

$P_{\text{Poisson}}(0; 2.5) = ?$ $P_{\text{Poisson}}(1; 2.5) = ?$ $P_{\text{Poisson}}(2; 2.5) = ?$ etc.
Take the relevant limit of the Binomial distribution:

\[P_{\text{Binomial}} (x; n, p) = \left[\frac{1}{x! (n-x)!} \right] p^x (1-p)^{n-x} \]

\[\frac{n!}{(n-x)!} = n(n-1)...(n-(x+1)) \approx n^x \quad \text{Since } x \text{ is } \ll n. \]

\[(1-p)^{-x} = 1 + px \rightarrow 1 \quad \text{As } p \rightarrow 0 \]

\[(1-p)^n = (1-p)^{\mu/p} = \left((1-p)^{-p} \right)^{\mu} \rightarrow (1/e)^\mu = e^{-\mu} \quad \text{Look it up…} \]

This is the Poisson Distribution:

\[P_{\text{Poisson}} (x; \mu) = \frac{\mu^x}{x!} e^{-\mu} \]

- defined for integer \(x \) values
- \(\mu \) represents mean number of counts per interval
Our example:

\[P_{\text{Poisson}}(0; 2.5) = \ ? \quad P_{\text{Poisson}}(1; 2.5) = \ ? \quad P_{\text{Poisson}}(2; 2.5) = \ ? \quad \text{etc.} \]

\[P_{\text{Poisson}}(0; 2.5) = \frac{2.5^0}{0!} e^{-2.5} \rightarrow 8\% \]

\[P_{\text{Poisson}}(1; 2.5) = \frac{2.5^1}{1!} e^{-2.5} \rightarrow 20\% \]

\[P_{\text{Poisson}}(2; 2.5) \rightarrow 26\% \]

\[P_{\text{Poisson}}(3; 2.5) \rightarrow 21\% \]

\[P_{\text{Poisson}}(> 0; 2.5) = 1 - P_{\text{Poisson}}(= 0; 2.5) \rightarrow 92\% \]

Most probable number of counts (2) is not the same as the mean (2.5)
Check that the sum over all values of x gives 100% probability:

$$\sum_{x=0}^{\infty} P_{\text{Poisson}}(x; \mu) = \sum_{x=0}^{\infty} \left[\frac{\mu^x}{x!} \right] e^{-\mu} = e^{+\mu} e^{-\mu} = 1$$

Yes!

Is it really true that μ is the mean of this distribution?

$$\langle x \rangle = \sum_{x=0}^{\infty} x P_{\text{Poisson}}(x; \mu) = \mu e^{-\mu} \sum_{x=1}^{\infty} \left[\frac{\mu^{x-1}}{(x-1)!} \right] = \mu e^{-\mu} e^{+\mu} = \mu$$

Yes!

What is the “width” of the distribution, i.e. the square-root of the variance?

$$\sigma^2 = \sum_{x=0}^{\infty} (x - \mu)^2 P_{\text{Poisson}}(x; \mu) = \sum_{x=0}^{\infty} x^2 \frac{\mu^x}{x!} e^{-\mu} - \mu^2 = \mu$$

$$\sigma^2 = \mu \quad \text{or} \quad \sigma = \sqrt{\mu}$$

For the Poisson distribution, the mean and the variance are the same.
Gaussian Distribution

Adapt the Binomial distribution to the limit when \(n \) gets large and the number of “successes” \((x\ or\ p)\) becomes large, too, so that \(np \gg 1\).

- The algebra is straightforward but lengthy, so we skip it
- Also, we can adapt the Poisson distribution (see Assignment)

\[
P_{\text{Poisson}}(x; \mu) \quad \mu > 10 \quad \rightarrow \quad p_{\text{Gaussian}}(x; \mu, \sigma)
\]

The result is the familiar Gaussian distribution:

\[
p_{\text{Gaussian}}(x; \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}
\]

\(x \) is now a continuous variable, so \(p_{\text{Gaussian}} \) is now a probability density function, not the “probability of (integer) \(x \)”

\[
P_{\text{Gaussian}}(x_1 < x < x_2; \mu, \sigma) = \int_{x_1}^{x_2} p_{\text{Gaussian}}(x; \mu, \sigma) \, dx
\]

Must integrate the “density” (little \(p \)) to get the “Probability” (big \(P \)).
\[P_{\text{Gaussian}}(x; \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \]

\[P_{\text{Gaussian}}(x_1 < x < x_2; \mu, \sigma) = \int_{x_1}^{x_2} P_{\text{Gaussian}}(x; \mu, \sigma) \, dx \]

\(x \) can be a real number, but for counting experiments, where \(x \) is an integer

\[\sigma^2 = \mu \quad \text{or} \quad \sigma = \sqrt{\mu} \]

like for the Poisson distribution

\[\text{FWHM} \equiv \Gamma = (2.354)\sigma \quad \text{(see Assignment)} \]

FWHM is not simply twice \(\sigma \)

For non-counting experiments, \(x \) can be any value. People assume/wish that their random or instrumental fluctuations vary in a Gaussian way. Sometimes it is even true... but often it is not. Be on guard to “non-Gaussian” fluctuations in real experiments.
Memorize two oft-used elementary numerical facts:

\[P_G(\mu - \sigma < x < \mu + \sigma) = \int_{\mu-\sigma}^{\mu+\sigma} p_{\text{Gaussian}}(x; \mu, \sigma) \, dx = 0.68 \rightarrow 68\% \]

\[P_G(\mu - 2\sigma < x < \mu + 2\sigma) = \int_{\mu-2\sigma}^{\mu+2\sigma} p_{\text{Gaussian}}(x; \mu, \sigma) \, dx = 0.95 \rightarrow 95\% \]
Lorentzian Distribution

Also known as the “Cauchy” or the “Breit-Wigner” distribution, in context.

NOT related to the other three, but is crucial in the physics of resonances and quantum mechanical state transitions.

\[\omega_0 = \sqrt{\frac{g}{L}} \]

Heisenberg:

\[\Gamma \tau = \hbar \]

\[\Delta E = E_\gamma \]
\[P_{\text{Lorentzian}}(x; \mu, \Gamma) = \frac{\Gamma}{2\pi} \frac{1}{(x - \mu)^2 + (\Gamma/2)^2} \]

-x is a continuous variable, so \(P_{\text{Lorentzian}} \) is a probability density function, not a “probability of \(x \)”

\[P_{\text{Lorentzian}}(x_1 < x < x_2; \mu, \Gamma) = \int_{x_1}^{x_2} P_{\text{Lorentzian}}(x; \mu, \Gamma) \, dx \]

Must integrate the “density” (little \(p \)) to get the “Probability” (big \(P \)).

“Big tails” compared to Gaussian line shape.

The second moment diverges, so we use \(\Gamma = \text{FWHM} \) to describe the function, rather than \(\sigma \).
Summary

• Learn about these 4 distributions and try to spot where they apply to your experiments in Modern Physics Lab.

• Do assigned problems for next week after reading Bevington chapters 1, 2, 3.