33-151 Matter & Interactions I Fall 2019

Due Wednesday of Week 3 at the start of lecture.

Name (print) Section:___________

Instructor Signature

Once you have your program running, ask one of the instructors to check it and then sign
above. Your assignment will not be accepted without the signature of an instructor. Your
score will be based equally on the signature and your answers to questions in the boxes.

Problems 2.P58 and 2.P59: Planetary Orbits

In this problem you will study the motion of a planet around a star. To start with a
somewhat familiar situation, you will begin by modeling the motion of our Earth around the
Sun. Write your answers to the questions on this sheet.

Planning

(a) What initial momentum should you use for the Earth? Note that the Earth orbits the
Sun once per year and that there are approximately 7 x 107 seconds in a year.

(b) What is a reasonable value for the time step to use? If it is too large, you will have
accuracy problems, while if it is too small, the program may not run fast enough.
Circular Orbits

(¢) Run your program and check to see that the Earth returns to its starting point, and
closes the orbit. Do this by displaying the trail of the Earth as it moves.
Computational Accuracy:

(d) As a check on your computation, is the orbit a circle as expected? Run the calculation
until the accumulated time, t, is the length of a year: does this take the Earth around the
orbit once, as expected?

What is the largest step size, dt, you can use that still gives a circular orbit and the
correct length of a year?

What happens if you use a much larger step size?

Non-circular Trajectories:
(e) Set the initial speed to 1.2 times the Earth’s actual speed. Make sure the step size is
small enough that the orbit is nearly unaffected if you make the step size smaller.

What kind of orbit do you get? What step size do you need to use to get results that
you can trust?

What happens if you use a much larger step size?

Produce at least one other qualitatively different non-circular trajectory for the Earth.
What difficulties would humans have surviving on the Earth if it had such a
non-circular orbit?

Force and Momentum:

(f) Choose initial conditions that give a non-circular orbit. Continuously display a vector
showing the momentum of the Earth (with its tail at the Earth’s position), and a different
colored vector showing the force on the Earth by the Sun, (with its tail also at the Earth’s
position). You must scale these vectors appropriately to fit into the scene. A method to
figure out what scale factor to use is to print out numerical values of the momentum and
the force and compare the magnitudes with the scale (distance) of the plots. For example,
if the width of the scene is W meters, and the force vector has a magnitude of F (in
Newton’s), you might scale the force by a factor of (0.1xW /F), which would make the
length of the vector about 10% of the size of the picture. Is the force in the same direction
as the momentum? How does the momentum depend on the distance from the Sun?
(SHOW THIS PROGRAM TO AN INSTRUCTOR FOR THE SIGNATURE.)

Additional Problems:

Change the form of the gravitational force from Gmyms/r? to Gmyms/r'%. Start with
the same initial conditions that you had for the earth in a circular orbit around the Sun.

What sort of orbit do you observe?

Change the form of the gravitational force from Gmyms,/r? to Gmyms/r3. You will also
need to increase G by multiplying by the radius of the orbit. Start with the same initial
conditions that you had for the earth in a circular orbit around the Sun.

What sort of orbit do you observe?
Slow the earth down by 15% and describe the orbit you observe. Do the same with it

speeded up by 15%.

Useful VPython Constructs::

The following three VPython constructs will be quite useful in this exercise.

#

earth.pos = vector(A,B,0)

#

rhat is a unit vector in the direction of the vector.
#

rhat = norm(earth.pos)

#

rsqrd is the square of the magntude of the vector.

rleng is the magnitude of the vector.

#
rsqrd = mag2(earth.pos)
rleng = mag(earth.pos)
#

Program Shell:

The following is a shell to help those with limited programing experience get started with
the code. You are not required to use this shell, it is only provided as a template to help
people get going on the code. Much of the preparation work above will allow one to initialize
things to the correct values (the zeroes in the code). You will also need to code up the
physics inside the main loop to cause the earth to move.

from math import *

from vpython import *

#

Needed Constants

#

sun_earth_distance = 0

speed_of_earth = 0

#

Set up the displays

#

scene2 = canvas(title=’Earth orbiting the Sun’,caption=’Animated Display’,
center=vector(0,0,0), background=color.black)

#

Make the radius of each object large enough to see them

#

earth = sphere(pos=vector(sun_earth_distance,0,0),radius=1e9,color=color.green)

sun sphere (pos=vector(0,0,0) ,radius=5e9,color=color.yellow)

Il
(@)

earth.mass

I
o

sun.mass
#

#
earth.momentum = earth.mass*vector(0,speed_of_earth,0)

sun.momentum = sun.mass*vector(0,0,0)

#

Create a trail for the earth, and vectors for the force on the earth.

scale should be a number that lets is see the force arrow on the plot.

#

earth.trail = curve(color=color.magenta)

earth.trail.append(pos=earth.pos)

#

earth.point = arrow(pos=earth.pos,color=earth.color,axis=-norm(earth.pos))
scale = 3e-12

#

Initial time is O, and the time step is twelve hours
#

time = 0

dt = 12*3600

#

We will initially run for one year

#

while time < 3.15e8:
rate(100)
time += dt

Compute the force on the earth using our force function.
earth.force = 0

Update the momentum and position of the Earth

earth.momentum = 0
earth.pos = 0

#

Update the Earth’s Momentum arrow

#
earth.trail.append(pos=earth.pos)
earth.point.pos = earth.pos
earth.point.axis = earth.forcexscale

#

days = time/(3600%24)
print (’days’,days)

