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Distribution of particles between two boxes

Introduction

In this exercise, we will numerically calculate the probability distributions of N particles
distributed between two boxes. As we showed in class, the distribution is given by:

P (N1, N2) =
N !

N1!N2!

(
V1

V

)N1
(
V2

V

)N2

(1)

with the condition that the total number of particles N1+N2 = N is constant and V1+V2 = V .
We will want to be able to vary the two volumes, keeping the total volume fixed. We also
showed that give a probability function, P (x), we can easlily compute the average of some
quantity, y, as

< y > =
∑
i

P (xi) yi ,

where the sum is over all possible values of x (and y). For example,

< N1 > =
N∑

N1=0

P (N1)N1 .

In order to simplify things, we will choose our total volume to be V = 1, and will start
with a total of N = 10 particles. However, we may want to increase N to a larger value
later, so be sure to allow this flexibility in your program.

For the simulated experiment, you will have the computer throw N particles into the two
subsystems with the appropriate probability. A random number between 0.0 and 1.0 can be
generated by the random function as given above, no argument is needed.

Programming Assignment

We will be doing problems 9.P59 and 9.P60 from the textbook.

9.P59. In this problem, we will numerically calculate the probability distributions of N parti-
cles distributed between two boxes. These probabilities are given by equation 1 where
we have the constraints that

N = N1 + N2

V = V1 + V2 .
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As we write our program, we want to be able to easily change V1 and V2 subject to
these constraints, but to start, choose that V1 = 0.5V . (a) Write a program which will
draw a plot of the probability distribution as a function of N1 for N1 goes from 0 to N .
Include a calculation if the average value of N1 based on your probability distribution.
Have your program print out the average value of N1, the most probable value of N1

and the probability of the average value. (b) Modify your program to plot the natural
logarithm of the probability as a function of N1. Verify that the maximum of this plot
is where the maximum was from part (a). (c) Use your program to carry out your
calculations and make plots for N = 50 particles and V1 = 0.25V , 0.5V and 0.75V .
Record the average and most probable values of N1, for these cases.

What are the most probable values for the three different volumes?

Are these what you expect them to be?

9.P60. Write a program that randomly throws one hundred particles, one at a time, into two
identical boxes. After the 100 particles have been thrown, record how many times we
found N1 = 0, 1, 2, · · · , 100 in the first box. Make a plot of these agains the number
N1. Does the location and the width of the histogram distribution agree with what you
expected from the theoretical probability distributions and the maximum entropy?

Does this randomly generated distribution look like what your analytic expression looks
like?

Vary the number of experiments from a small number like 10 up to 1000 and comment
on the agreement.

There is a program shell at the end of this document to get you started, but you will
need to still do quite a bit of work to get things going. We have broken this exercise into
two related programs. You are welcome to combine them all into one larger program if you
want, but there are two signatures associated with this
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Programing Hints

You are likely to need the factorial, binomial coefficient and natural log functions in VPython.
Recall that the factorial of zero is defined to be one, 0! = 1. The functions are given as:

factorial(N) = N ! = N · (N − 1) · (N − 2) · · · 2 · 1

combin(a, b) =

(
a
b

)
=

a!

b!(a− b)!

log(x) = ln(x) = loge(x)

random() = random number from 0 to 1

Note that in Equation 1, the ratio

N !

N1!N2!
= combin(N,N1) .

To raise a number to a power, we can do the following

aN = a ∗ ∗N

We also note that because of internal precision of our computer, there is a maximum value for
which we can compute the factorial. However, the upper limits for the binomial coefficients,
combin(a, b) are larger as the algorithm does not fully evaluate the a! term in the expression.
Thus, if you can write things in terms of combin(a, b), you will be able to got to larger
numbers. So rather than writing

#

N2 = N - N1

Prob = factorial(N)/(factorial(N1)*factorial(N2))

#

it is better to write the probability as

#

Prob = combin(N,N1)

#

which will not suffer from numerical problems.
In the random-selection program, 9.P71, you will create a histogram which is used to

record the number of times each outcome occurs. There are some commented-out notes at
the end of your shell on this. The trick is to build a list for each possible value of N1 as seen
in volume V1, and repeat the experiment many times. Each time you test how many are
in V1, and then increment the appropriate element in the list. After you have done many
numerical experiments, plot the number of times each value of N1 occurred. The following
hints might be helpful when you do the randomized throwing of the particles. You need to
understand what this is doing before trying to code it up ....
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#

# Set up an empty list to contain the results:

#

i=0

while (i < N):

randomdata.append(0)

#

# Carry out the Nexpt numerical experiments, the index i

# represents a particular experiment.

#

Ne=0

while (Ne<Nexpt):

#

# Throw N total particles:

#

N1 = 0

Np = 0

while(Np<N):

#

# decide if the particle went into V1...

#

if random()<(V1/V):

N1+=1

#

# get the next particle in this experiment

Np+=1

#

# N1 is the number of times the particle went into the first

# volume in this experment. Add one to the appropriate element

# of our list.

randomdata[N1]+=1.0

#

# Go to the next experiment.

#

Ne+=1

#

Program Shell

from math import *

from vpython import *

#

# Set up the total number of samples and experiments
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#

N = 0 # Number of particles to distribute

V = 1.0 # Let the total volume be one unit

ratio = 0. # Set up the ratio V1/V

#

# The following is an empty list that allows us to store the probability

# for each of the N1=0 to N1=N possibilities.

#

probdata=[]

#

# Set up the two volumes:

#

V1 = V*ratio

V2 = V-V1

#

# We also need to determine at which value of N1 we have the maximimum

# of the probabability, so in each step of our loop, we need to check

# if the current probability is max, and if so record the location (Max)

# and probability (MaxValue). We will also compute the average.

#

Max = 0 # Most probable value of N1

MaxValue = 0 # Probability of most probable value of N1

Average = 0 # Average value of N1

#

# Setup the graphical displays. You are likely to need to modify

# some of this as you go through the various programs.

#

scene1=canvas(title=’Combinations’,caption=’Probability Distribution’,center=vector(0,0,0))

#

s=’<b>Distribuion of Particles in a Box</b>’

graph(title=s, xtitle=’N’, ytitle=’Probability’,xmin=0,xmax=N,

ymin=0,width=400,height=200)

#

probplot=gvbars(color=color.blue)

#

# --------------------------------------------------

# Initialization Complete, Start Actual Calculations

# --------------------------------------------------

#

N1=0

while (N1<=N):

#
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# Compute your probability for our choice of N1

#

p = 0

#

# Add this probability to the list of probabilities

#

probdata.append(p)

#

# Do a check to see if the current value of p is the maximum value.

# (Max and MaxValue)

#

# if (p>MaxValue):

#

#

# Update your running sum for the average value of N1

# (Average)

#

Average = 0

#

# Go to the next value of N1

#

N1+=1

#

# We have finished the loop, print out the numerical results.

#

print (" Analytic Results:" )

print (" Average Value of N =",Average)

print (" Most Probable N =",Max,"; Probability=",MaxValue)

print (" --------------------")

#

# Plot the probability distributions in a window, assuming that we

# have the filled probdata array from above.

#

i=0

while (i<=N):

probplot.plot(pos=(i,probdata[i]))

i+=1
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