33-151 Matter & Interactions I Fall 2019

Introduction to Jupyter Notebooks

1 Introduction

In this course, we will be doing some scientific computing, which will allow us to solve problems that we
would not be able to solve with pencil and paper. We will be doing this work using jupyter notebooks. In
the note book, we will us python to to our programs, and in particular, an add on to python known as visual
python, or vpython. You are not expected to have had any programming experience prior to this course.
During most of the course, we will provide program shells that only require you to code the physics, then
run the programs.

2 Installation of Python, Jupyter Notebooks and VPython

It is advisable to install Jupyter Notebooks on your own computer. The easiest way to do this is to use
the Anaconda distribution of Python available at Continuum Analytics. Use the Download link on their
website, https://www.anaconda.com/, and follow the instructions there for your computer. There is support
Windows, MacOS and Linux.

We will be using VPython, and you will need to install this in addition to anaconda. The instructions
can be found on vpython.org. Once you have installed anaconda, open a Command Prompt (on Windows)
or a terminal window on Mac OS (under Utilities) and Linux. In that window,

conda install -c vpython vpython

or

pip install vpython

You can update your installation using the corresponding command to how you installed.
conda update -c vpython vpython

or

pip install vpython --upgrade

On a Windows machine, you may also need to install nodejs. To do this, download from https://nodejs.org/en/download /
and then execute the command

jupyter labextension install vpython

3 Jupyter Notebooks
3.1 Start a Jupyter Notebook

From a Windows machine,

Windows Menu -> Anaconda 3 -> Jupyter Notebook

From a Magc, you can either launch from a terminal window (open in Utilities).
jupyter notebook

or to specify your browser

jupyter notebook --browser=firefox

Use can also use Anaconda-Navigator under Applications. On linux, it is the same a the terminal on a Mac.

https://jupyter-notebook.readthedocs.io/en/stable/
https://vpython.org/contents/docs/index.html
https://www.anaconda.com/
http://www.vpython.org
https://nodejs.org/en/download

jupyter notebook
or to specify your browser
jupyter notebook --browser=firefox

Your browser will now be running Jupyter. In the upper right corner, click on the New button, and from
the pulldown menu, select Vpython. You will now have a Jupyter Notebook that you can start using.

3.2 Getting Started

: JUpyter Untitled (autosaved) Logout
File Edit View Insert Cell Kernel Widgets Help Trusted & |VPython O
B+ < @B 4 ¥ MR B C W Code M

In []:

The first thing you should do is name your notebook. Click on the Untitled and give your notebook a
name. [used “BouncingBall” for this example. Jupyter notebooks are organized into units called “cells”,

: JUpyter BOUnCingBa” (autosaved) Logout
File Edit View Insert Cell Kernel Widgets Help Trusted VPython O
B+ < @ B 4 ¢ MRn B C W Coe - =

In []:

and is the region to the right of the
In []:

in the figure. The type of cell is indicated by box labeled code. There are several types of cells, but the two
that we will use here are

o Markdown cells where we can add and format comments to the notebook.
e (Code cells, where we will be able to Vpyton code.

We will start by entering some comments, so we need to change our cell to a Markdown cell. We can
now enter text in the markdown cell. and the format it by hitting

Shift+Enter

If you double click on the formatted text, you can edit it.
We can now go to the cell that is just below our comments and enter some code. A simple example is to
type

- JU pyter BOUnCingBa” (unsaved changes) Logout

File Edit View Insert Cell Kernel Widaets Help Trusted VPython O
Code

+ x @& B 4 ¥ MRun B C M | ¥ Markdown B
Raw NBConvert
Heading

Bouncing Ball Jupyter Notebook

Bouncing Ball Jupyter Notebook

In []:

Bouncing Ball Jupyter Notebook
In this notebook, we are going to explore some of the things we can do
with a Jupyter Notebook.

In []:

Bouncing Ball Jupyter Notebook

In this notebook, we are going to explore some of the things we can do with a Jupyter Notebook.

In []:

print("Hello World")

into the cell, and then “execute” or “run” the code. You run the code by clicking on the little arrow on the
left side of the cell or the Run at the top of the notebook.

) JUpyter BOUnCingBa” (autosaved) Logout

File Edit View Insert Cell Kernel Widgets Help Trusted VPython O

B + < & B 4+ ¥ MRn B C M Code ML

Bouncing Ball Jupyter Notebook

In this notebook, we are going to explore some of the things we can do with a Jupyter Notebook.

MIn [1]: print("Hello World")

Hello World
“Run this cell

3.3 Starting Vpython

We now need to tell our notebook that we want to use vpython. To do this, we need to import a couple
of modules by typing the following into our code cell and then running it. We can now start to execute

Bouncing Ball Jupyter Notebook

In this notebook, we are going to explore some of the things we can do with a Jupyter Notebook.

MIn [1]: from vpython import *

from math import *
Run this cell

vpython and math expressions. To do this, we will create a new cell below the one we have by clicking on
Insert and selecting Insert Cell Below from the dropdown menu. In the new cell you can now use python as

: Ju pyter BouncingBall Last Checkpoint: Yesterday at 9:49 AM (unsaved changes) Logout
File Edit View Insert Cell Kernel Widgets Help Trusted VPython O
+ x @B Insert Cell Above C » Code :] =

Insert Cell Below

Bouncing Ball Jupyter Notebook

I dhin madalanls iin ava ~aina da Avelaca ~amen ~f dha dhinas sia ann A b A besdar Madabloaals

a calculator. Type in various things below and see what you get.

> print (12+56)

> print (3%x3)

> print (sqrt(25))

> a = vector(1,1,1)
b = vector(-1,2,3)
print (a+b)
print (dot(a,b))

print (cross(a,b))
print (mag(a))
print (norm(a+b))
> print (sin(2))
> print (cos(pi))

You can also do loops and conditionals. A loop will continue to execute the same piece of code until
some condition is met, while a conditional will execute a piece of code if the condition is true. We have a
few examples these here. A example of a loop is shown below, loops are started with the while command,
and the indentation and punctuation are critical. The loop will continue as long as 7 is smaller than 5, then
exit. The code

i+=1
adds one to the value of 7. It could have also been written as
i=1i+1

where both are equivalent. Running this code produces the result as shown. Another type of loop is a

MIn [6]: 1 =1
while i<5:
print (i)
i+=1

s W N

so-called infinite loop, that will never stop. An example is given by

>i=1
while True:
print (i)
i+=1

Conditionals are started with the if command. A simple example is something like following which will loop
over values of ¢ between 1 and 9, and print when i is equal to 4.

> i=1
while i<10:
if i==4:
print("i is equal to",i)
i+=1

There are various logical expressions that we can use in both loops and conditional statements. In addition

== equal to I = not equal to < less than
> greater than | <= less than or equal | >= greater than or equal

to these comparative test, we can also use and and or in our comparisons.
4 Animating Physics

We are now going to move forward to

4.1 3D Geometric Objects

There are a number of three-dimensional objects that vpython know about. A full list can be found at
https://vpython.org/contents/docs/primitives.html. We will introduce these shapes as needed throughout
the course. The first that we will use is a sphere. If we start by entering

sphere ()

and then running the code will produce a new cell above the code cell. This cell contains a grey sphere
on a black background as shown below. You can manipulate the object. On a Mac, using two fingers on
your track bad zooms in or out on the object. Using Shift and one finger allows you to move the point of
view, and Control and one finger allows you to rotate about the center of the screen. We can also control

MIn [1]: £from vpython import *
from math import *

In [2]: sphere()

the attributes of the sphere, which make it more useful to use. We will name our sphere, “ball”, which will
allow us to have several. We will also define the center, radius and color of the sphere. The nominal colors
are reb, blue, green, yellow, cyan, magenta, white and black. You can also specify the color using rgb with
color=vector(r,g,b). If we run the following code snippet, we will see a cyan ball in the middle of the
screen.

ball = sphere(pos=vector(0,0,0),radius=0.5,color=color.cyan)

A second object that is useful is the boz. With the following commands, we will create a pair of boxes,
which we call WallL and WallR, at the left and right sides of the screen. Running these commands will
produce an image with a ball at the center of the screen, and walls on the left and right-hand sides. You can
now explore the varios zoom and perspective functions with this image.

Walll = box(pos=vector(-10,0,0),size=vector(0.1,10,5),color=color.blue)
WallR = box(pos=vector(10,0,0),size=vector(0.1,10,5),color=color.blue)

4.2 Animating the Ball

We would now like to animate the ball so that it can move across the screen. To do this, we will need to
define new attributes of the ball. If it is going to move, we need a velocity, which we can set using the
command below. At this point, we note that python knows nothing about units. We have defined positions
and sizes as numbers. For simplicity, we assume that these are all in meters, but we need to manage the
units. For a velocity, we will assume that the units are m/s, and we give the ball velocity ¥ = (1,0,0) m/s.

https://vpython.org/contents/docs/primitives.html

In [2]: ball = sphere(pos=vector(0,0,0),radius=0.5,color=color.cyan)
WallL box (pos=vector(-10,0,0),size=vector(0.1,10,5),color=color.yellow)
WallR box (pos=vector(10,0,0),size=vector(0.1,10,5),color=color.yellow)
#

ball.velocity = vector(1,0,0)

In addition to position and velocity, we will also need time (assumed to be in seconds). In animation,
there are actually two times that may be relevant, the total elapsed time, and the time step between each
animation frame. We need to set these as well. We will use t for the total elapsed time and dt for the time
step. We initially set the elapsed time to 0 and the time step to be 0.1 s.

t =0
dt = 0.1

We can now animate our ball. The underlying physics can be written as a difference equation:
AF = At

which we will implement using the logic that after one time step, the new position will be the old position
plus the change in position. We also see that python is managing all the vectors for us. The following
expression represents three equations, one for each of the x, y and z coordinates. We can just let python
worry about that detail!

Tnew = Told + AT
When coding, we implement such an action using the expression
ball.pos = ball.pos + ball.velocity * dt
This leads to the following loop to animate the ball.

while True:
ball.pos = ball.pos + ball.velocity*dt
t =t + dt

Our code now looks like the following, and if we run this, the ball just goes off to the right forever. We run
the code by clicking on the ;4 button at the top of the notebook. It knows nothing about walls, and we

. _ Jupyter BouncingBall Last Checkpoint: 20 hours ago (autosaved)
Jupyter BouncingBall Last Checkpoint: 20 hours ago (unsaved changes)

File Edit View Insert Cell Kernel Widgets Help
File Edit View Insert Cell Kernel Widgets Help

B+ x @B 4 v Wrn B C»] coe S B+ @B 4 ¥ MR B C » Code M

_ restart the kernel, then re-run the whole notebook (with dialog) Ji I interrupt the kernel

MIn [2]: ball = sphere(pos=vector(0,0,0),radius=0.5,color=color.cyan)
WalllL = box(pos=vector(-10,0,0),size=vector(0.1,10,5),color=color.yellow)
WallR = box(pos=vector(10,0,0),size=vector(0.1,10,5),color=color.yellow)

#

ball.velocity = vector(1,0,0)

#

t=20

dt= 0.1

#

while True:
rate(100)
ball.pos = ball.pos + ball.velocity*dt
t = t+dt

have an infinite loop, so it never stops. An object in motion remains in motion, except to the extent which
it interacts with other objects. We can force the program to stop by clicking on the stop symbol, as shown.
One other thing to note in the code below is the rate(100) that is in the loop. This limits the number of
steps we take per real second, and without it our computer may run so fast that we see nothing.
We now want to tell the ball how to interact with the walls. This is a simple elastic reflection that
we need to consider. In a reflection, the component of the velocity that is normal to the reflecting surface
changes sign. For us, this means that we need to reverse the x component of velocity, or

Vp — —Ug.

We also need to determine if the ball is interacting with the wall. We can approximate this by checking to
see of the center of the ball would move to the opposite side of the wall. If it would, we apply the interaction.
This can be done with the following conditional statements inside our animation loop.

if ball.pos.x < Walll.pos.x:

ball.velocity.x = - ball.velocity.x
if ball.pos.x > WallR.pos.x:
ball.velocity.x = - bal.velocity.x

f we run this code, the ball will bounce back and forth between the two walls forever. We could change this
by setting a finite time on the loop and stopping it after we have reached some total elapsed time.

while t < 1000:
rate(100)

Because we have vectors, we can change the balls velocity to be in more than one dimension. A simple
change is to give the velocity a small ¥ component.

ball.velocity = vector(1,0.1,0)

Running the code now, the ball will slowly move upward, bouncing between invisible walls as we neglected
to code in the extent of the two walls.

MIn [2]: ball = sphere(pos=vector(0,0,0),radius=0.5,color=color.cyan)
Walll, = box(pos=vector(-10,0,0),size=vector(0.1,10,5),color=color.yellow)
WallR = box(pos=vector(10,0,0),size=vector(0.1,10,5),color=color.yellow)

#
ball.velocity = vector(1,0,0)
#
t =0
dt= 0.1
#
while t<1000:
rate(100)
ball.pos = ball.pos + ball.velocity*dt
t = t+dt
if ball.pos.x < WallL.pos.x:
ball.velocity.x = -ball.velocity.x
if ball.pos.x > WallR.pos.x:
ball.velocity.x = -ball.velocity.x

4.3 Following the Object

Now that we have the ball bouncing around, we can introduce a couple of additional shapes to help us
visualize the motion. The first shape is an arrow that we will use to to indicate the direction of the ball. We
need to initially create the arrow after we have defined both the ball and its velocity using the command.

ball.bv = arrow(pos=ball.pos,axis=ball.velocity,color=ball.color)
The arrow then needs to be updated every time the ball moves, so at the end our loop we will add the line

ball.bv.pos = ball.pos
ball.bv.axis = ball.velocity

The arrow also has a length attribute that we can change. The default is 1, but we may want to scale it to
the actual length of the vector we are following. We would do that by setting the length of the arrow be
equal to the magnitude of the velocity vector.

ball.bv = arrow(pos=ball.pos,axis=ball.velocity,color=ball.color,length=mag(ball.velocity))
and

ball.bv.pos = ball.pos
ball.bv.axis = ball.velocity
ball.bv.length = mag(ball.velocity)

We can also have the object leave a trail. There are a couple of ways to do this. The easiest is to use the
make_trail attribute of the sphere when we created the ball. This will draw a trail that is the same color as
the ball, and follows the ball forever.

ball = sphere(pos=vector(0,0,0),radius=0.5,make_trail=True,color=color.cyan)

If we want more control over the trail, we can set additional attributes. We can either have a curve which is
the default, or points. We can set the interval of how often a point is added, the default is every step, and
we can set how many steps to retain on the trail using retain. Finally, it is possible to set the color.

ball = sphere(pos=vector(0,0,0),radius=0.5,make_trail=True,color=color.cyan,interval=10,
retain=250,trail_color=magenta)

There is an alternative way to leave a trail using the curve object. This has more attributes and
functionality than the make_trail, so we describe it here. For most of our work in the course, they are
100% equivalent, especially if you have a finite trail length. The one place they differ is that the make_trail
approach may have a glitch at the start of the trail. The curve will not. To use this method, we need to
define the curve after we have defined the ball.

ball = sphere(pos=vector(0,0,0),radius=0.5,color=color.cyan)
ball.trail = curve(color=color.magenta)
ball.trail.append(pos=ball.pos)

and then every time we move the ball, we need to append the position to the trail

ball.pos = ball.pos + ball.velocity * dt
ball.trail.append(pos=ball.pos)

As a checkpoint, we show the current version of our code here where we have chosen to use the make_trail
because we are only retaining 250 points along the path.

Bouncing Ball Jupyter Notebook

In this notebook, we are going to explore some of the things we can do with a Jupyter Notebook.

In [1]: from vpython import *
from math import *

M In [2]: ball = sphere(pos=vector(0,0,0),radius=0.5,color=color.cyan,make_trail=True)

ball.interval=10
ball.retain=50
ball.trail_color = color.magenta

#
Walll = box(pos=vector(-10,0,0),size=vector(0.1,10,5),color=color.yellow)
WallR = box(pos=vector(10,0,0),size=vector(0.1,10,5),color=color.yellow)
#

ball.velocity = vector(1,0.1,0)
ball.bv = arrow(pos=ball.pos,axis=ball.velocity,length=mag(ball.velocity),color=ball.color)

#
t=0
dt= 0.1
#
while t<1000:
rate(100)
ball.pos = ball.pos + ball.velocity*dt
t = t+dt
if ball.pos.x < WallL.pos.x:
ball.velocity.x = -ball.velocity.x
if ball.pos.x > WallR.pos.x:
ball.velocity.x = -ball.velocity.x

ball.bv.pos = ball.pos
ball.bv.axis = ball.velocity
ball.bv.length = mag(ball.velocity)

5 Additional Things to Do

Now that you have a working program, there are a few additional things to try.

First, add top and bottom walls, and make them touch, and then modify your code so the ball bounces
off all four walls. If you want you can add invisible front and back walls as well.

Next add a constant acceleration to your program. The acceleration should update the velocity, and then
the velocity will update the position.

Add a second ball bouncing around in the box. You can allow the two balls to interact if you would like.

10

6 References

e Vpython documentation can be found online at https://vpython.org/contents/docs/index.html.
e Python documentation can be found online at https://docs.python.org.

e Additional documentation on Jupyter notebooks can be found online at https://jupyter-notebook.readthedocs.io/en/stal

11

https://vpython.org/contents/docs/index.html
https://docs.python.org
https://jupyter-notebook.readthedocs.io/en/stable/

	Introduction
	Installation of Python, Jupyter Notebooks and VPython
	Jupyter Notebooks
	Start a Jupyter Notebook
	Getting Started
	Starting Vpython

	Animating Physics
	3D Geometric Objects
	Animating the Ball
	Following the Object

	Additional Things to Do
	References

