AMERICAN
JOURNAL

Alﬁ;ummu of PHYSICS
[ — -‘

Special relativity and the Michelson—Morley interferometer
Reinhard A. Schumacher

Citation: American Journal of Physics 62, 609 (1994); doi: 10.1119/1.17535

View online: http://dx.doi.org/10.1119/1.17535

View Table of Contents: http://scitation.aip.org/content/aapt/journal/ajp/62/7?ver=pdfcov
Published by the American Association of Physics Teachers

WebAssign. /// s owis

e - W. H.,
m===" openstax coLlece @ FREEMAN
—

The PREFERRED Online Homework

Solution for Physics

Every textbook publisher agrees! Whichever physics text

you're using, we have the proven online homework

solution you need. WebAssign supports every major

physics textbook from every major publisher.
webassign.net

% Higher Education [ .81l

s as e
= " yLyhi.':,y‘:,_}-“.\“ . :

e —

e



http://scitation.aip.org/content/aapt/journal/ajp?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/test.int.aip.org/adtest/L23/1835435805/x01/AIP/WebAssign_AJPCovAd_1640x440_11_5_2013/WebAssign_Download_Banner_Physics_09062012.jpg/7744715775302b784f4d774142526b39?x
http://scitation.aip.org/search?value1=Reinhard+A.+Schumacher&option1=author
http://scitation.aip.org/content/aapt/journal/ajp?ver=pdfcov
http://dx.doi.org/10.1119/1.17535
http://scitation.aip.org/content/aapt/journal/ajp/62/7?ver=pdfcov
http://scitation.aip.org/content/aapt?ver=pdfcov

to the relation between rationalized and unrationalized electromagnetic
systems,” Am. J. Phys. 21, 281-286 (1953).

2 Andre J. deBethune and Jerome J. Perez, “Dimensional symmetry of elec-
trical and magnetic quantities in the unrationalized mks system of units,”
Am. J. Phys. 24, 584584 (1956).

2E, Katz, “Concerning the number of independent variables of the classical
electromagnetic field,” Am. J. Phys. 33, 306—312 (1965).

ZBernard Leroy, “Conversion of electromagnetic quantities from mksa to
Gaussian units (and vice versa) using dimensional analysis,” Am. J. Phys.
52, 230-233 (1984).

®Giovanni Mana, “Electromagnetic quantities and units derived from clas-
sical relativistic electrodynamics,” Am. J. Phys. 56, 1081-1085 (1988).

Yjohn David Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New
York, 1975), pp. 191-194.

2The assumption we make is not the only possible assumption. An interest-
ing alternative choice is to assign dimensions of magnetic quantities based
on the analogy between the electric quantities E, €, P, and D and the
magnetic quantities H, uy, uoM, and B. The analogy we have chosen is
more consistent with the modern assumption that B rather than H is the
primary magnetic parameter, while the above analogy is more consistent
with the historical assumption that H rather than B is the primary magnetic
parameter.

PJohn David Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New
York, 1975), p. 819.

Special relativity and the Michelson—Morley interferometer

Reinhard A. Schumacher

Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
(Received 30 September 1993; accepted 27 January 1994)

We examine the Michelson—Morley interferometer from an inertial frame in which the apparatus is
in motion. Our goal is to complete the typical introductory exposition which drops this discussion
as soon as the postulates of relativity are introduced. Computing the paths of light in the apparatus
depends on understanding the tilting of the half-silvered mirror due to Lorentz contraction, and also
the effect of reflecting light from a moving mirror. The traditional ray diagrams of the classical
analysis are augmented to show these features more clearly.

L. INTRODUCTION

The Michelson—Morley (MM) experiment is the cel-
ebrated experimental result which is usually used to intro-
duce the necessity for a principle of relativity which declares
that all inertial reference frames are equivalent, and that the
speed of light is isotropic and constant in any inertial frame.
Discussions found in most texts leave a few lingering ques-
tions which are not answered to our satisfaction. Typically,
after presenting the ““classical” (ether) analysis of the MM
apparatus, and then citing the observed absence of the pre-
dicted fringe shift, Einsteinian relativity is postulated and the
MM discussion is abruptly dropped. By hypothesis the speed
of light is equal in both arms of the interferometer, so the
absent fringe shift becomes axiomatic. But with special rela-
tivity (SR) in hand, we may revisit the MM apparatus to
consider what happens when the experiment is viewed, not
from the reference frame in which the interferometer is at
rest, but from a frame in which the apparatus is moving with
velocity v. In particular, we wish to check the consistency of
the nonorthogonal (i.e., oblique) angles of the light rays
which arise in such a frame. We also inquire whether the
half-silvered mirror at the center of the interferometer cor-
rectly reflects the light to and from the interferometer arms,
such that light travels in the appropriate “triangular path” in
the transverse arm, and correctly brings the longitudinal ray
into line with the transverse ray at the detector. We also
revisit the purely classical discussion to examine the precise
ray angles in that case. These points are not discussed in the
standard texts on SR but can be of concern to students who
think carefully about the problem.
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IL. THE TRANSVERSE RAY

Figure 1 shows schematically the path of the transverse
ray in the MM interferometer in a reference frame where the
apparatus is moving to the right with speed v. The ray, which
is vertical in the interferometer rest frame, now makes an
angle O with respect to the x axis. If we call the length of the
arm D, then the time it takes the ray to travel one way be-
tween the mirrors is

( D2 )1/2 D
= =

Py Y = ? Y 1)
where y = 1/y1—8? and B=v/c. We can easily compute
the angle, ©, for this geometry as

tan ©=D/vi=1/BYy. )

We can compare this angle with a result commonly discussed
in texts, namely the formula for the aberration of light; this
formula is typically obtained either from the Lorentz trans-
formation of a plane wave, or as the high-speed limit of the
angle transformation for a moving particle. It is usually dis-
cussed in the context of stellar aberration. We have',

o 1 sin®’
tan T ycosO'+8° 3)
where O is the propagation angle with respect to x’ in the
(primed) interferometer rest frame. For the transverse ray
O'=7/2, so we find tan ©=1/8y, in agreement with the
geometrical approach which led to Eq. (2). This is our first
consistency check: the geometry of the triangular light path
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Fig. 1. A Michelson—-Morley interferometer moving with velocity v along
the x axis. Representative transverse (7) and longitudinal (L) rays are shown.
The half-silvered mirror is set at angle ¢; the T ray travels at angle ©, as
does the reflected L ray, if the mirror angle is selected correctly.

agrees with the Lorentz transformation for a plane wave of
light.

ITII. THE MOVING MIRROR

The behavior of light reflecting from the moving half-
silvered mirror at the center of the apparatus is key to under-
standing how a ray which was perpendicular to x' in the
interferometer rest frame becomes a ray traveling at angle ©
in the new frame where the interferometer is moving. The
mirror is adjusted in its rest frame to an angle of exactly
¢y’ =45°. Measured in the new frame it is Lorentz contracted
in the direction of v, making the mirror more perpendicular
to the light from the source, and at first glance appears to
reflect the light at an angle greater than ninety degrees: the
mirror tilts the “wrong” way. In the new frame we have, as
seen in Fig. 2,

tan ¢=y, 4)

so that ¢ is always greater than 45°.

Compensating this tilt of the mirror is the fact that a wave
striking a moving surface will reflect at an angle which is
velocity dependent. Figure 2 shows the ray optics for the
case when the ray coming from the source is reflected into
the transverse arm. A wave front of arbitrary width, W,
strikes the “bottom” edge of the mirror before the “top”
edge, during which time interval, ¢, the mirror has moved a
distance vt. There is therefore an effective angle of the mir-
ror, ¢, which can be computed using

w
X2=Ct=—+vt,
Y
which leads to
w 1
Xy=———.
2 y1-8
From this we have

®)
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Fig. 2. Rays describing the reflection of a light-front of (arbitrary) width W
from a moving mirror (velocity v). Shown are the nominal mirror angle, ¢,
the effective mirror angle, ¢, and the resultant reflection angle ©. In the SR
case, ¢ is determined by the Lorentz contraction factor 7.

tan $=2 = p(1-B)= \| s

an = =v1-B)=\175- ©
The reflected angle, O, is twice the effective angle ¢, just as
for the stationary mirror it would be twice ¢. In Eq. (2) we
saw that tan ©=1/8y. Consistency now demands that

tan O =tan(2¢)=1/8%. ¢
We proceed using the double-angle identities to obtain
2 tan ¢
tan —m . (8)

With Eq. (6) giving the effective angle of the mirror we
obtain

0=12 1-p 1
OB By
This is the desired result. We have verified that light reflect-
ing from the Lorentz-contracted moving mirror is directed at
precisely the angle prescribed by the geometry of the moving
interferometer, and in agreement with the aberration formula.

We may repeat this type of analysis for the longitudinal
arm of the interferometer. Here the question we can ask is
whether the returning ray, when it reflects from the Lorentz-
contracted mirror, falls into line with the returning transverse
ray on the way to the detector. The top edge of the longitu-
dinal wave front now strikes the mirror before the bottom
edge, and the mirror has again moved a distance vt in the
time interval. The effective angle of the mirror is now steeper
than in the previous case, and steeper than 45°. The analog of
Eq. (5) now reads

)

w1
x2=7 1—;‘5 (10)
and, similar to Eq. (6), we find the effective angle
w 1+8
tan ¢=x—2= Y1+ B)= -I‘:E . (11)

The reflected ray satisfies the condition O =m7—2¢. The
analog of Eq. (8) is
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2 tan ¢
tan 9‘—’—1——m ,

which leads to the result, by using Eq. (11),
o 1+8 1 12)
e O= TI T4 A By

Thus we again find the consistency we seek: The reflected
longitudinal ray is parallel to the transmitted transverse ray,
and hence the two rays can interfere in the desired way at the
detector. The reflection of light from the moving, Lorentz-
contracted mirror leads to the correct result.

IV. THE CLASSICAL ANALYSIS

Coming back to the analysis of the interferometer in the
classical, pre-SR scenario, we consider the ray and mirror
angles. We require the transverse ray still to travel as shown
in Fig. 1, interpreting the figure as the classical ether rest
frame. The required angle of the ray is seen to be given by
tan O =1/By as before. We also have the relation O =2 ¢, as
before, and so we can solve for the effective angle of the
moving mirror as

tan p=y(1—B). (13)

But in the absence of Lorentz contraction of the mirror we
have, as the analog to Eq. (6),

tan ¢=tan .(1— B), (14)

where the subscript ¢ is supposed to designate the “classi-
cal” case, and so

tan = y. (15)

Thus in the classical analysis the mirror must, strictly speak-
ing, be tilted at a velocity dependent angle slightly steeper
than 45° in order to make the transverse ray follow the cor-
rect geometrical path. This effect is second order in v/c, and
hence of no detectable consequence in the usual MM setup,
as was already clear to Michelson.? If we take the mirror to
be set “correctly” according to Eq. (15), then the returning
longitudinal ray is reflected according to

tan ¢=tan ¢.(1+8)=7y(1+p), (14)

in exact algebraic analogy to Eq. (11). The returning longi-
tudinal ray therefore is reflected exactly in line with the
transmitted transverse ray, but only if the mirror has been set
using a priori knowledge of v.

On the other hand, if in the classical analysis the half-
silvered mirror is set to exactly 45°, the transverse ray will
“overshoot” the desired trajectory while the longitudinal ray
will “undershoot.” This is illustrated in Fig. 3. Given that
tan ,=1, this leads to tan ¢=(1= ), for the longitudinal (L)
and transverse (T) cases, respectively. Equation (8) then al-
lows us to write, for the ray angles on the way to the detec-
tor,

12(1x8)

FRPEY B
where the subscripts denote rays from the two arms. In prin-
ciple, the interference pattern will be dependent on the posi-
tion of the detector. The difference in these angles is of
course exceedingly small; if the difference is called &, then in

the small angle approximation it is easy to show this angle to
be

tan eL,T= (16)
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Fig. 3. Classical (no special relativity) diagram of the MM apparatus. Solid
lines are for a mirror correctly adjusted such that ¢=tan"'y. Dashed lines
for mirror at exactly 45°, showing second order aberration of rays: (a) in-
terferometer rest frame, (b) ether rest frame.

8=p%7, 17)

which is of order 1073, and hence negligible in the usual
MM experiment.

V. FURTHER DISCUSSION

We have not discussed the absence of a fringe shift when
considering the MM apparatus from the standpoint of SR.
This is because the theory gives this basic result by construc-
tion, and it is discussed in most texts. The Lorentz-contracted
longitudinal arm shortens the travel time in that arm by just
the right amount to compensate the smaller travel time, due
to the smaller distance covered, in the transverse arm. It is
only important to distinguish conceptually between the old
Lorentz—Fitzgerald contraction in which the velocity param-
eter, v, is the interferometer speed with respect to the ether,
and the SR Lorentz contraction in which the velocity param-
eter is the relative speed of the interferometer and the (arbi-
trary) frame of the observer.

The analysis presented here may be compared with an
article by Soni,> who also pointed out the importance of con-
sidering motion of the mirror in the MM analysis. In that
work, however, only first-order results, in v/c, were obtained,
and the Lorentz contraction is not taken into account.

VI. SUMMARY AND CONCLUSIONS

We have presented an analysis of the MM interferometer
considered from an inertial frame in which the apparatus is
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moving with constant velocity. Motivated by a desire to
round out the discussion of this famous experiment from the
standpoint of special relativity, since standard treatments of
the subject omit this point, we see that it provides a useful
pedagogical exercise to illustrate some of the well-known
features of SR.

In a frame-in which the interferometer is moving, the Lor-
entz contraction of the half-silvered mirror is not the only
feature which determines the path of the transverse and lon-
gitudinal light rays. The reflection of light from the moving
half-silvered mirror, as computed using simple ray optics,
must be considered in addition to the Lorentz contraction in
order to obtain the correct propagation angles of the light.
Having done this, we find consistency between the geometry
of the situation and the ray angles computed using the Lor-
entz transformation via the aberration equation. Reconsider-

ing the classical, pre-special relativity analysis of the MM
apparatus, we find that an exact calculation of the angle of
the half-silvered mirror results in a velocity-dependent angle
which must be set “by hand” if the rays are to follow the
correct paths. Ignoring the correction leads to a divergence of
the interfering light rays. These effects are of second order in
v/c and so are negligible in the MM experiment, but are
worth considering to obtain a complete understanding of the
physics of the MM interferometer.
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and the luminiferous ether,” Am. J. Sci. 34, 333-345 (1887).
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We examine the bound-state spectra of several one-dimensional supersymmetric quantum
mechanical systems containing Dirac &function potentials. Specifically, we investigate the cases of
two attractive & functions, as well as both the infinite well and simple harmonic potentials with an

added attractive or repulsive & function.

I. INTRODUCTION

The study of supersymmetric (SUSY) quantum mechan-
ics, starting with its first elucidation by Witten' as a toy
example of supersymmetric field theories, has provided new
insights into some of the most familiar aspects of nonrelativ-
istic quantum mechamcs (See also the early work of Cooper
and Freedman.?) Studies of exactly soluble potentials®* and
their connectlon to shape invariance,™ mverse scattermg
problems,” and extensions of the WKB method>® have all
used the ideas of supersymmetry to great advantage. The
concepts of supersymmetry have even begun to appear in
undergraduate textbooks on quantum mechanics (see, e.g.,
Ref. 9), usually in the context of generalizations of the fac-
torization methods (first introduced by Schrodinger'® and
then extended by Infeld and Hull'') often used to elegantly
solve the simple harmonic oscillator problem. Since the dis-
cussion of this problem using raising and lowering operators
is now a standard feature of most such textbooks, the use of
supersymmetry to understand the general power of such
methods is very appropriate.

Especially at this latter level, because it is often good
pedagogy to “learn by doing,” it is instructive to have in
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hand many tractable, analytically soluble examples of one-
dimensional supersymmetric quantum mechanical systems
for illustrative purposes. Several sets of authors have pro-
vided a wide variety of cases for study (see, e.g., Refs. 12—
16, and references therein), often based on extensions of
simple and rather familiar potentials.

Supersymmetric quantum mechanics, with its fascinating
structure of sets of wavefunctions in different potentials giv-
ing rise to the same energy spectrum, is also a very natural
setting for the use of visualization of wave forms. The ability
to make the intuitive connections between the total energy
eigenvalue, the potential energy function, and the form of the
quantum wave function is a useful goal in a standard under-
graduate quantum mechanics course. These connections can
be examined in a novel context in SUSY quantum mechanics
where the energy eigenvalues are identical, but where the
partner potentials are (often dramatically) different. The
question of how the partner wave functions “respond” to
their corresponding potentials to yield exactly the same en-
ergies is an intriguing one. It can often motivate students to
examine both the formal structure of the theory in more de-
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